Graphene enables a system that can detect cancer cells

Dec 20, 2016

Researchers at the University of Illinois at Chicago have shown an interfacing system that can differentiate a single cancerous cell from a normal cell using graphene, hopefully opening the door to developing a simple, noninvasive tool for early cancer diagnosis.

Graphene to detect cancer image

The team explains that this graphene system is able to detect the level of activity of an interfaced cell. The cell's interface with graphene rearranges the charge distribution in graphene, which modifies the energy of atomic vibration as detected by Raman spectroscopy. The atomic vibration energy in graphene's structure differs depending on whether it's in contact with a cancer cell or a normal cell, because the cancer cell's hyperactivity leads to a higher negative charge on its surface and the release of more protons.

Versarien enters agreement with Fern Plastic Products to manufacture graphene-enhanced injection moulded products

Dec 20, 2016

Versarien announced an agreement with Fern Plastic Products to manufacture injection moulded products using graphene-enhanced polyaryletherketone (PAEK) materials. The agreement with Fern Plastics follows the agreement with Scafell Organics announced earlier this month.

The plan is for Versarien to utilize Fern Plastics' manufacturing facilities and expertise to produce injection moulded products using graphene-enhanced PAEK materials produced through Versarien's collaboration with Scafell.

Looking back into the hottest graphene topics in 2015 - getting ready to summarize 2016

Dec 20, 2016

UCF researchers receive $1.3 million from DARPA to develop a graphene-enhanced IR detector

Dec 18, 2016

The Defense Advanced Research Projects Agency (DARPA) has reportedly awarded a $1.3 million grant to a team from the University of Central Florida (UCF) to fund the development of a graphene-enhanced next-generation infrared detector that could be used in fields like night vision, meteorology, and space exploration.

The UCF team is working on an entirely new type of detector that relies on graphene. The researchers plan to use graphene to make an infrared detector that is small, portable, doesn't need to be cooled, and produces high-resolution images. Unlike current technologies, which can detect only one band of light, the next-gen detector would be tunable and able to see a range of bands.

Versarien enters agreement with Scalfell Organics to develop graphene-enhanced PAEK materials

Dec 18, 2016

Versarien logo imageVersarien, the advanced materials group, has signed an agreement with polymer chemical producer Scafell Organics to develop graphene-enhanced polyaryletherketone materials (PAEKs). These materials are a family of semi-crystalline thermoplastics with high-temperature stability and high mechanical strength, used in the automotive and aerospace industries.

Versarien reportedly plans to utilize Scafell’s facilities and production expertise to produce graphene enhanced PAEK materials using Versarien supplied graphene nano platelets. It is hoped that these graphene enhanced materials will be available for sale by Versarien through its sales team as well as Scafell’s customers.

Graphene-based system may enable imaging of electrical activity in heart and nerve cells

Dec 18, 2016

Researchers at the Berkeley Lab and Stanford University have used graphene as the film of an ultra-sensitive camera system designed for visually mapping tiny electric fields in a liquid. The new platform should permit single-cell measurements of electrical impulses traveling across networks containing 100 or more living cells. The researchers hope it will allow more extensive and precise imaging of the electrical signaling networks in our hearts and brains. Additional potential applications include the development of lab-on-a-chip devices, sensing devices and more.

CAGE system using graphene image

The team explains that the basic concept was examining how graphene could be used as a general and scalable method for resolving very small changes in the magnitude, position, and timing pattern of a local electric field, such as the electrical impulses produced by a single nerve cell. Other techniques have been developed to measure electrical signals from small arrays of cells, but these can be difficult to scale up to larger arrays and in some cases cannot trace individual electrical impulses to a specific cell. In addition, this new method does not perturb cells in any way, which is fundamentally different from existing methods that use either genetic or chemical modifications of the cell membrane.