You are here

A novel doping method could open the door to FLG use as transparent conducting electrodes

Feb 15, 2017

Researchers from King Abdullah University of Science and Technology (KAUST), in collaboration with the Georgia Institute of Technology, have recently demonstrated a simple, solution-based, method for surface doping of few-layer graphene (FLG) using novel dopants (metal-organic molecules) that show a minimal effect on the optical transmission as compared to other dopants like metal chlorides.

This work investigates the effect of dopant strength and dosage on the electronic and electrical transport properties of doped FLG. Moreover, It reveals fundamental differences between the doping results in single layer graphene and few-layer graphene. The study focused on few-layer CVD graphene, rather than single-layer CVD graphene, a somewhat less common area of research to date.

Exeter team develops a simple and cheap way to make graphene devices

Jan 24, 2017

A team of researchers from Exeter’s Centre for Graphene Science have developed a method for creating entire device arrays directly on the copper substrates used for the commercial manufacture of graphene. Complete and fully-functional devices can then be transferred to a substrate of choice, such as silicon, plastics or even textiles.

This new approach is simpler than conventional ways of producing graphene-based devices, and could lead the way to using simple and cheap-to-produce graphene devices for various applications, from gas and bio-medical sensors to touch-screen displays.

EU's Gladiator project demonstrates a large 2 x 1 cm flexible OLED panel with graphene electrodes

Jan 04, 2017

The Fraunhofer Institute FEP and other partners at EU GLADIATOR project developed a functional flexible OLED lighting device based on graphene electrodes. This device is 2 x 1 cm in size - much larger the previous prototype developed as part of that project last year.

OLED device with graphene electrodes (Gladiator, Jan 2017)

The graphene electrodes were produced in a CVD-based process. The graphene was deposited on a copper film, covered with a flexible polymer carrier and then the copper was etched away.

Exeter team unveils novel graphene production method that could accelerate commercial graphene use

Dec 14, 2016

Researchers from the University of Exeter have developed a new method for creating entire device arrays directly on the copper substrates used for commercial manufacture of graphene. Complete and fully-functional devices can then be transferred to a substrate of choice, such as silicon, plastics or even textiles.

Exeter University's new graphene production method image

This new approach is said to be cheaper, simpler and less time consuming than conventional ways of producing graphene-based devices, thus holding real potential to open up the use of cheap-to-produce graphene devices for a host of applications from gas and biomedical sensors to displays.

Graphene-enhanced photodetector that operates in the microwave range may be used in displays and wearables

Nov 30, 2016

Researchers at the Daegu Gyeongbuk Institute of Science and Technology (DGIST) in South Korea and the University of Basel in Switzerland have developed a new graphene-based photodetector, that is regarded as the world's first graphene-based microwave photodetector. The sensor can reportedly detect 100,000 times less light energy than any existing graphene photodetector and may be useful in applications like wearable devices and flexible displays.

The teams studied the microwave absorption capabilities of bilayer graphene arranged into p-n junctions. Previous attempts to study the microwave range in photodetection met a considerable obstacle - the microwave on the detector itself had much smaller energy than the surface potential difference caused by the surrounding environment. This included residues on the surface of graphene that were left behind during its fabrication.