Displays News

Plastic Logic and the CGC demonstrate the first graphene-based flexible display

In June 2013, Cambridge University's Graphene Centre (CGC) and Plastic Logic started to develop a transparent graphene-based backplane for flexible displays. Now Plastic Logic demonstrated the first display that was developed in that collaboration research. Plastic Logic says that this is the first time grpahene has been used in a transistor-based flexible device.

The prototype (shown above) is an active-matrix electrophoretic (E Ink) display fabricated on flexible plastic. The electrodes are made from solution-processed graphene which was patterned after deposition with micron-scale features. The prototype has a pixel density of 150 PPI and was made at low temperatures (less than 100 degrees celsius). This is just a prototype of course and you can see many defects in display.

Graphene quantum dots prove highly efficient in emitting light

Researchers from the Korean's KAIST institute developed a new process to produce graphene quantum dots that are equal in size and highly efficient in emitting light. Quantum Dots potentially can be used to develop emissive flexible displays (similar to OLED displays), and this development may enable those displays to be graphene-based.

The process involves mixing salt, water and graphite and then synthesizing a chemical compound between layers of graphite. All the resulting quantum dots were 5 nanometer in diameter, and these QDs do not contain and heavy metals (like current commercial quantum dots). The process is reportedly easy to scale and should not be expensive.

Cambridge researchers aims to make flexible, printed graphene-based cameras

The National Science Foundation of China (NSFC) awarded an 18-month Young International Researcher Fellowship to a University of Cambridge researcher that will look to se graphene materials composites for organic optoelectronic compounds. The researcher hope to use inkjet printers to produce those devices and then integrate them into displays, light detectors and gas sensors.

In plain English, it means that they hope these kind of devices will enable flexible, cheap and fast cameras. Compared to current printed organic circuits, the graphene-based will be less sensitive to temperature and moisture and will also offer much faster response time that is suited for photodetection.

Doping Graphene with Lithium enables highest performing conductive transparent film

Researchers discovered that lithium-doped graphene sheets (3-60 layers in thickness) result in the highest ever sheet resistance and transmittance ever reported for continuous thin-films. This may prove to be an important step towards an ITO replacement for touch panels and solar cells.

The lithium was inserted between the graphene layers. As a result of this electrochemical intercalation, the Fermi level is upshifted by the doping effect, resulting in a more transparent and conductive material.

China's Ningo government launch a local long-term graphene plan

The Ningbo government in China decided to help build the local graphene industry as part of its strategic industry plans. The government will launch several graphene projects as part of its "medium and long-term plan for the technological innovation and industrial development of the graphene industry (2014 – 2023) in Ningbo" plan.

Ningo government will help support three stages of the graphene market - raw materials, graphene composite materials and equipment and final products.

BGT and Powerbooster launch a graphene research center in Xiamen, China

Update: It turns out that Konstantin Novoselov did not join the new research institute, he just visited to give a lecture...

In 2013, Shanghai-based Powerbooster Technology developed a graphene-based flexible touch-panels for mobile devices, with ambitious plans to mass produce those panels. The graphene supplier for powerbooster is Bluestone Global Tech (BGT).

Now it is reported that BGT, Power Booster and Xiamen University established the Graphene Industrial Technology Research Institute in Xiamen. The will mainly develop the applications of graphene in batteries, touch screens, cancer treatment, LED lamps, sea water desalination and more.

Graphene and CNTs used to develop a robust and flexible spaser

Researchers from Monash University use graphene and carbon nanotubes to develop a spaser (a nano-laser that emits a beam of light through the vibration of free electrons unlike the electromagnetic wave-emission process of regular lasers).

This new spaser is more robust and flexible compared to regular spasers made from silver and quantum-dots. It can also withstand high temperatures and is eco-friendly.


Copyright 2009-2014 Metalgrass software