Displays

FlexEnable details their graphene OTFT goals

UK-based FlexEnable was spun-off from Plastic Logic in February 2015 with an aim to further develop and commercialize the company’s technology platform for organic thin film transistor (OTFT) arrays for flexible displays and ubiquitous sensing. Last month FlexEnable joined the graphene flagship, and announced plans to develop new use cases for graphene in flexible electronics.

Plastic Logic and CGC graphene-based EPD prototype photo

I talked briefly to Mike Banach, FlexEnable's Technical Director, and he explained the company's graphene plans and goals. FlexEnable is not a material company - they do not aim to develop and produce graphene material. The define themselves as a applied process technology - what we call a graphene application developer, focused on the flexible electronics market.

Unique transparent graphene paper may improve supercapacitors' capacitance

Researchers at the University of Guangzhou, China, managed to improve the capacitance of supercapacitors by nearly 1000-fold compared with that of the laminated or wrinkled CVD graphene-film-based supercapacitors. To achieve this, the researchers integrated transparency into freestanding, flexible graphene paper (FFT-GP). These supercapacitors's capacitance is also about ten times better than previously reported values for transparent and flexible supercapacitors based on pure carbon materials. However, some carbon-based nontransparent supercapacitors still perform better than the FFT-GP-based transparent supercapacitor. 

Transparent graphene paper to improve supeercapacitors image

The improved performance is mainly based on the prism-like graphene building blocks that the FFT-GP is made of. The hollow structures of the graphene that give the material its transparency also provide additional space for chemical reactions to occur compared to other materials. Also, the aligned and interconnected prism-like structures provide a wide open path for ions and electrons to travel along and the good charge transport leads to an overall better performance.

Thomas Swan to establish a graphene manufacturing process and develop graphene applications

Thomas Swan logoUK-based Thomas Swan is a privately held global chemical manufacturing company that currently has a 1kg per day pilot line as well as a vision of being the most trusted supplier of high quality graphene on the market. 

The company's plans for 2015 include expanding its graphene production capacity to 10 tonnes per year (supported by Horizon 2020 funding) and establishing collaborations to develop applications in printed electronics, touch panels and energy storage devices (supported by Innovate UK funding).

Australian scientists design a unique process for making graphene 3D display

Researchers at Australia's Swinburn University of Technology designed a graphene-based technique to create a 3D pop-up floating display. The scientists created nanoscale pixels of refractive index (the measure of the bending of light as it passes through a medium) made of reduced graphene oxide in a process that does not involve heat, which they say is important for the subsequent recording of the individual pixels for holograms and naked-eye 3D viewing.

The team explains that by changing the refractive index, it is possible to create many optical effects. This new technique can be leveraged to achieve compact and versatile optical components for controlling light and can create the wide-angle display necessary for mobile phones and tablets. The scientists believe that this new generation digital holographic 3D display technology could also have applications for military devices, entertainment, remote education, and medical diagnosis as well as lay foundation for future flexible and wearable display devices and transform them for 3D display.

FlexEnable joins the Graphene Flagship and details its graphene plans

FlexEnable LogoUK-based FlexEnable has recently joined the Graphene Flagship and announced its plans for this year, which will mainly focus on developing new use cases for graphene in flexible electronics including highly conductive interconnect lines and barrier films.

Starting April 2016, the Graphene Flagship is scheduled to move into its core project phase, where FlexEnable’s expertise in industrializing flexible electronics will be utilized to harness the potential of graphene and other 2d materials. FlexEnable’s Cambridge fab will play an important role in showcasing graphene’s performance over surfaces of all sizes, including large areas as well as in the development of advanced product concepts.

Siberian scientists couple graphene with nanodiamonds to create a unique lighting fixture

Scientists from the Novosibirsk Nikolayev Inorganic Chemistry Institute and the Krasnoyarsk Biophysics Institute have invented a new composite material made of graphene and nano-diamonds. By placing nano-diamonds on the surface of vertically aligned tubes of graphene (probably carbon nanotubes), the scientists created a unique composite material that glows under the impact of a weak electric field. 

The researchers say this is the prototype of a tiny light fixture, a nano-tube with a glowing nano-diamond on top. Such structures can be used in a variety of fields, from new types of displays to health diagnostics techniques.

Angstron Materials develops thermal foils for smartphones and electronic devices

Angstron Materials logoOhio-based Angstron Materials has developed a group of cost-effective thermal foil products that can be customized for handheld devices and other products. The company says that its foil sheets have been qualified for use by a major mobile electronics company. Such thermal foils can be used for the technology beneath devices' screens that conducts heat away from internal electronic components and batteries to help maintain optimal performance.

Angstron’s thermal foils are available in a variety of grades. The company states that its foils are thinner than other products on the market and so give manufacturers greater design flexibility than competing methods. Angstron’s foil sheets also can be sourced with equivalent or greater thermal conductivity.

Pages


Copyright 2009-2015 Metalgrass software