Researchers at École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland and National Institute for Materials Science in Japan have combined the electrical properties of graphene with the semiconducting characteristics of indium selenide in a field-effect geometry, to create a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Device schematic representing a fully encapsulated few-layer InSe channel, with graphene electrodes. Image credit: Nature Nanotechnology
To perform quantum computations, quantum bits (qubits) must be cooled down to temperatures in the millikelvin range (close to -273 Celsius), to slow down atomic motion and minimize noise. However, the electronics used to manage these quantum circuits generate heat, which is difficult to remove at such low temperatures. Most current technologies must therefore separate quantum circuits from their electronic components, causing noise and inefficiencies that hinder the realization of larger quantum systems beyond the lab. Now, researchers in EPFL’s Laboratory of Nanoscale Electronics and Structures (LANES), led by Andras Kis, have fabricated a device that not only operates at extremely low temperatures, but does so with efficiency comparable to current technologies at room temperature.