You are here

Manchester U team shows the influence of pre- and post-dispersion on the properties of GNP-enhanced epoxy

Mar 23, 2017

Researchers from The University of Manchester have conducted a study that presents a review of the three steps of manufacturing graphene/epoxy nano-composites. The possible pre-treatments of nanoparticles before dispersion are introduced, and their influence on the final nanocomposite properties discussed.

SEM images of fracture surface of aligned GNP based epoxy compositeSEM images of fracture surface of aligned GNP based epoxy composite

The study stresses interesting results, among which are improvements in various characteristics via the use of GNPs. For instance, an improvement of the thermal diffusivity of 220% was seen when compared to a non-oriented GNP epoxy sample. The work demonstrates how the addition of functionalized graphene platelets to an epoxy resin will allow it to act as electrical and thermal conductor rather than as insulator. The mechanical properties of functionalized GNP/epoxy composites show improvement of the interfacial bond.

Talga enters agreement with Zinergy to develop graphene inks for printed flexible bateries

Mar 22, 2017

Talga Resources logoTalga Resources, an Australia-based company focused on graphite mining and graphene supply and applications development, has announced that it has signed a joint development agreement with Zinergy UK to co-develop and supply graphene conductive inks for electrodes in thin, flexible printed batteries.

Under the terms of the agreement, Talga and Zinergy will collaborate to develop and trial graphene-based conductive ink formulations in components of the patented Zinergy ultra-thin printed battery. The development program will run for an initial 12 month period.

A new graphene oxide coating to improve the performance of lithium-sulfur batteries

Mar 21, 2017

Researchers at Yale University have developed an ultra-thin coating material, based on graphene oxide, that has the potential to extend the life and improve the efficiency of lithium-sulfur batteries. The newly developed material is a dendrimer-graphene oxide composite film, that can be applied to any sulfur cathode.

GO coating to improve Li-sulfur batteries performance image

The researchers state that sulfur cathodes coated with the material can be stably discharged and recharged for more than 1,000 cycles, enhancing the battery’s efficiency and number of cycles. In addition, they said “the developed film is so thin and light it will not affect the overall size or weight of the battery, and thus it will function without compromising the energy and power density of the device”.

Skeleton Technologies launches graphene-based engine start supercapacitor

Mar 19, 2017

Skeleton Technologies, developer and manufacturer of high energy and power density supercapacitors, has announced launching a new graphene-based engine start module to help power heavy industry vehicles in extreme conditions. Called SkelStart Engine Start Module 2.0, it is available in 24V and 12V versions and is based on the graphene-based SkelCap supercapacitors, which Skeleton says provide the highest power and energy density on the market.

Skeleton's new graphene-based supercapacitor image

The new module’s casing is made of non-flammable material that is resistant to vibration and shock, and is a stud terminal device in BCI Group 31 size. Skeleton states that “SkelStart Engine Start modules are designed to provide reliable engine starting in even the harshest conditions, as well as reduced ongoing costs on maintenance and replacement. Businesses can therefore expect their equipment to work cost effectively year-round, affording them peace of mind.”

Graphene used in a molecule that converts carbon dioxide to carbon monoxide

Mar 15, 2017

An international team of scientists has designed a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide. The process includes using a nanographene-rhenium complex connected via an organic compound known as bipyridine to trigger a highly efficient reaction that could someday replace solar cells.

Graphene compound to replace solar cells image

The molecule acts as a two-part system: a nanographene "energy collector" that absorbs energy from sunlight and an atomic rhenium "engine" that produces carbon monoxide. The energy collector drives a flow of electrons to the rhenium atom, which repeatedly binds and converts the normally stable carbon dioxide to carbon monoxide. The idea to link nanographene to the metal arose from earlier efforts to create a more efficient solar cell with the carbon-based material. But this model actually eliminates the solar cells, and uses the light-absorbing quality of nanographene alone to drive the reaction.