You are here

Monash University, Ionic Industries and Clean TeQ receive grant to develop GO-based water-treatment technology

Feb 22, 2017

Clean TeQ Holdings, along with Monash University and Ionic Industries, received a grant of $632,285 AUD (almost $500,000 USD) from the Australian Government under the Cooperative Research Centre’s Project (CRC-P) program, to develop energy efficient wastewater treatment technology using graphene oxide technology. The new project is scheduled to commence in March 2017.

Water treatment photo

Researchers at Monash University have developed a method of producing graphene oxide which is suitable for the production of water and wastewater filtration products. Clean TeQ has already commercialized its Continuous Ionic Filtration (CIF®) technology which is used for water and wastewater filtration. The use of graphene oxide adsorbents in Clean TeQ ‘s process will allow the capture of non-ionic species and thereby extend the range of waters than can be successfully treated.

Cambridge team develops a method for producing conductive graphene inks with high concentrations

Feb 22, 2017

Researchers at the Cambridge Graphene Centre at the University of Cambridge, UK, have designed a method for producing high quality conductive graphene inks with high concentrations. Conductive inks are useful for a range of applications, including printed and flexible electronics, transistors, and more.

The method uses ultrahigh shear forces in a microfluidization process to exfoliate graphene flakes from graphite. The process is said to convert 100% of the starting graphite material into usable flakes for conductive inks, avoiding the need for centrifugation and reducing the time taken to produce a usable ink. The research also describes optimization of the inks for different printing applications, as well as giving detailed insights into the fluid dynamics of graphite exfoliation.

Graphenea, Nokia and IEMN-CNRS collaborate to create high-frequency graphene transistors on flexible substrates

Feb 21, 2017

Scientists from IEMN-CNRS, Graphenea, and Nokia have demonstrated flexible graphene transistors with a record high cut-off frequency of 39 GHz. The graphene devices, made on flexible polymer substrates, are stable against bending and fatigue of repeated flexing.

Graphenea and Nokia create impressive GFET image

The graphene field effect transistor (GFET) is made from high quality CVD grown graphene with a carrier mobility of ~2500 cm2 V-1 s-1 on a flexible Kapton substrate with a thin alumina dielectric spacer in the channel region. The use of such sophisticated and optimized materials leads to the record high frequency performance as well as stability against bending. The GFET reportedly continues to operate even after 1,000 bending cycles and can be flexed to a radius of 12 mm with a cutoff frequency shift of up to 10%.

Graphene coating on copper wires may help prevent electromigration and help minimize future electronics

Feb 21, 2017

As electronics keep shrinking in size, several problems arise. One of these is that the copper wires that connect transistors to form complex circuits need to be very thin, but carry so much current that can cause them to break apart due to atoms being knocked out of place. One was of solving this, studied by a group led by Stanford University, is to wrap copper with graphene. The group found that this can alleviate this major problem called electromigration.

stanford team solve electromigration problem with graphene coating image

This was presented at a recent IEEE meeting that addressed the coming problems for copper interconnects and debated ways of getting around them. Growing graphene around copper wires can help prevent electromigration, and also seems to bring down the resistance of the copper wires. Generally speaking, the narrower the wire, the higher its resistance. “Interconnects have had to shrink while increasing the current densities by 20 times,” said Intel Fellow Ruth Brain at the meeting.

Grafoid develops GPURE Graphene-based membrane technologies for industrial markets

Feb 19, 2017

Grafoid logoGrafoid has announced the development of the GPURE Membrane Platform, consisting initially of six next generation GPURE Graphene-Polymer membrane technologies intended for industrial markets.

GPURE Graphene-Polymer membranes include:

  • GPURE (A) - A high performing, free-standing membrane developed for water desalination applications
  • GPURE (B) - A stable, large area membrane developed for wastewater filtration suitable for very high temperature operating applications
  • GPURE (C) - A large area free-standing membrane developed for water filtration pre-treatment and may be suitable for use in gas separation applications and may be used as a lightweight component for automotive and sports equipment applications
  • GPURE (D) - A large area membrane that may be used for gas separation and sensing applications
  • GPURE (E) - A large area membrane intended for use in gas separation applications
  • GPURE (F) - May be applied as a graphene varnish for wood surfaces to protect against moisture, UV light and high temperatures