Gnanomat announced new commercially available Graphene-Silver nanocomposite

Gnanomat recently announced the launch of its new commercially-available graphene-based nanocomposite.

A new Graphene-Silver nanocomposite commercially available by Gnanomat image

Graphene – Silver nanocomposite, a product supplied as a dry powder, is made of pristine graphene coated with silver nanoparticles. This type of material has been shown to have great potential in scientific literature, in applications such as inks on textiles for highly conductive wearable electronics, electrochemical sensors, catalyst, antibacterial activity and detection of heavy metal ions.

Researchers examine 'Kagome' graphene and report promising results

Researchers from the Department of Physics and the Swiss Nanoscience Institute at the University of Basel, working in collaboration with the University of Bern, have recently produced and studied a compound referred to as "kagome graphene", that consists of a regular pattern of hexagons and equilateral triangles that surround one another. The name kagome comes from the old Japanese art of kagome weaving, in which baskets are woven in the same pattern.

Kagome graphene revealed to have fascinating properties imageKagome graphene is characterized by a regular lattice of hexagons and triangles. Credit: R. Pawlak, Department of Physics, University of Basel

The team's measurements have reportedly delivered promising results that point to unusual electrical or magnetic properties of the material.

New technique may enable large-area integration of 2D materials

Researchers affiliated with the Graphene Flagship from RWTH Aachen University, Universität der Bundeswehr München and AMO in Germany, KTH Royal Institute of Technology in Sweden and with Protemics have reported a new method to integrate graphene and 2D materials into semiconductor manufacturing lines, a milestone for the recently launched 2D-EPL project.

Schematic illustration of the methodology for wafer-level transfer of two-dimensional materials imageImage from Nature Communications

Two-dimensional (2D) materials have a huge potential for providing devices with much smaller size and extended functionalities with respect to what can be achieved with today's silicon technologies. But to exploit this potential, it is vital to be able to integrate 2D materials into semiconductor manufacturing lines - a notoriously difficult step. This new technique could be a step in the right direction as far as solving this problem is concerned.

Researchers develop monolayer graphene-based reversible self-folding structures

A team of scientists at Johns Hopkins University in the U.S. has designed a mass-production strategy to create monolayer graphene-based reversible self-folding structures. The material may find potential uses in microfluidics and micromechanical systems.

 Share  Email  Home Nanotechnology Nanophysics Home Nanotechnology Nanomaterials JANUARY 11, 2021 FEATURE  Self‐folding 3-D photosensitive graphene architectures imageMechanism and versatility of self‐folding SU8 films. Image from article

As proof of concept, the team achieved complex and functional devices in the form of rings, polyhedra, flowers and origami birds. They then integrated gold electrodes to the constructs to improve their detection sensitivity. The experiments suggest a comprehensive framework to rationally design and fabricate scalable and complex, 3D, self-folding optical and electronic devices by folding 2D monolayer graphene.

University of Washington team finds that carefully constructed stacks of graphene can exhibit highly correlated electron properties

A research team led by the University of Washington recently reported that carefully constructed stacks of graphene can exhibit highly correlated electron properties. The team also found evidence that this type of collective behavior likely relates to the emergence of exotic magnetic states.

“We’ve created an experimental setup that allows us to manipulate electrons in the graphene layers in a number of exciting new ways,” said co-senior author Matthew Yankowitz, a UW assistant professor of physics and of materials science and engineering. Yankowitz led the team with co-senior author Xiaodong Xu, a UW professor of physics and of materials science and engineering.