Researchers show the amphipathic nature of graphene flakes and examine their potential for use as surfactant

Researchers at Cranfield University and the University of Cambridge in the UK, Institut Pasteur in France, Silesian University of Technology in Poland and UniversIti Teknologi PETRONAS in Malaysia have found that at a particular size (below 1-micron lateral size), it is possible to achieve amphiphilic behaviour in graphene. This graphene flake attracts water at its edges but repels it on its surface, making it a new generation of surfactant that can stabilize oil and water mixtures.

In a statement, Krzysztof Koziol, Professor of Composites Engineering and Head of the Enhanced Composites and Structures Centre at Cranfield University said, “This new finding, and clear experimental demonstration of surfactant behavior of graphene, has exciting possibilities for many industrial applications. We produced pristine graphene flakes, without application of any surface treatment, at a specific size which can stabilize water/oil emulsions even under high pressure and high temperature... Unlike traditional surfactants which degrade and are often corrosive, graphene opens new level of material resistance, can operate at high pressures, combined with high temperatures and even radiation conditions; and we can recycle it. Graphene has the potential to become a truly high-performance surfactant.”

NanoGraf receives $1.65 Million from U.S. Department of Defense to Improve the batteries that power soldiers’ equipment

NanopGraf logo imageNanoGraf, an advanced battery material company, has announced that it has partnered with the U.S. Department of Defense to develop a longer-lasting lithium-ion battery, designed to provide U.S. military personnel with better portable power for the equipment they rely on to operate safely and effectively. Nanograf's graphene-wrapped silicon anode cells are hoped to significantly improve equipment runtime in the field.

The Department of Defense will provide NanoGraf with $1.65 million to develop silicon anode-based lithium-ion technology in a format compatible with all portable batteries, with a goal of enabling a 50-100 percent increase in runtime when compared to traditional graphite anode lithium-ion cells.

Rice University team aims to improve wastewater treatment using nanospheres wrapped in graphene oxide

Researchers at Rice University design a "shield" made of graphene oxide, that helps particles destroy antibiotic-resistant bacteria and free-floating antibiotic resistance genes in wastewater treatment plants.

 A shield of graphene helps particles destroy antibiotic-resistant bacteria and free-floating antibiotic resistance genes in wastewater treatment plants image

The labs of Rice environmental scientist Pedro Alvarez and Yalei Zhang, a professor of environmental engineering at Tongji University, Shanghai, introduced these microspheres wrapped in graphene oxide. Alvarez and his partners in the Rice-based Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) have worked toward quenching antibiotic-resistant "superbugs" since first finding them in wastewater treatment plants in 2013.

New work shows that superconductivity in twisted bilayer graphene can exist away from the magic angle

New study by Caltech shows that superconductivity in twisted bilayer graphene can exist away from the magic angle when coupled to a two-dimensional semiconductor

In 2018, researchers made the surprising discovery that when you layer two sheets of single-atom-thick graphene atop one another and rotate them by precisely 1.05 degrees with respect to one another, the resulting bilayer material takes on new properties: when the density of electrons in the material is increased through the application of a voltage on a nearby electrode, it becomes a superconductor—electrons can flow freely through the material, without resistance. However, with a slight change in electron density, the bilayer becomes an insulator and prevents the flow of electrons.

Rice University researchers use sticky tape to improve batteries

Rice University scientists led by Prof. James Tour have turned adhesive tape into a silicon oxide film (mixed with laser-induced graphene) which replaces troublesome anodes in lithium metal batteries.

Rice University scientists stick to their laser guns to improve lithium metal technology imageAt left, a copper current collector with a laser-induced silicon oxide coating created at Rice University. At right, a scanning electron microscope image of the coating created by lasing adhesive tape on the copper collector. Courtesy of the Tour Group

The researchers used an infrared laser cutter to convert the silicone-based adhesive of commercial tape into the porous silicon oxide coating, mixed with a small amount of laser-induced graphene from the tape’s polyimide backing. The protective silicon oxide layer forms directly on the current collector of the battery.

International team discovers "mediator atoms" that help graphene self-heal

An international team of researchers in Korea, the UK, Japan, the US and France recently shed light on the mysterious ability of graphene (and other carbon materials) to change its structure and even self-heal defects, by showing that fast-moving carbon atoms catalyze many of the restructuring processes.

Until now, researchers typically explained the structural evolution of graphene defects via a mechanism known as a Stone-Thrower-Wales type bond rotation. This mechanism involves a change in the connectivity of atoms within the lattice, but it has a relatively large activation energy, which makes it seem unlikely to succeed without some form of assistance.