South Korean researchers develop a graphene device controlled by static electricity

Jul 18, 2017

A research team from the South Korean Sungkyunkwan University has developed a technology that can control graphene electronic device through static electricity. The team has developed a gate that utilizes the graphene electrostatic phenomenon; Static electricity that occurs from friction is trapped inside of a lower board and serves as a gate. Unlike current materials, formation, modification, and elimination are said to be possible with this technology.

The team aims to make the process that forms a gate which will control current from an electronic device unnecessary. As a result, integration with high density should be possible and it is expected that this technology will reduce cost and time to manufacture electronic devices.

Researchers in India develop a graphene-silver-pyyrole composite for supercapacitors

Jul 16, 2017

Researchers at the India Institute of Technology, Kharagpur, have developed a new graphene, silver and pyyrole nanocomposite material suitable for making supercapacitors.

The nanomaterial was made of a graphene sheet onto which silver nanoparticles, each about 15-20 nanometers wide, had been embedded uniformly. The material was shown to have a high specific capacitance of 472 farad per gram at a current density of 0.5 amperes per gram. It could retain 95% of its capacitance after 1,000 consecutive charge-discharge cycles.

Graphene/cellulose nanofiber hybrid sensor to efficiently detect alcohol

Jul 14, 2017

An international group of researchers from Saudi Arabia, China and the US have developed a graphene-bacterial cellulose nanofiber (GC/BCN) hybrid sensor to detect alcohol (ethanol) with great efficiency. The sensor was described as flexible, transparent, highly sensitive and with an excellent alcohol recognition performance. Electrical tests in different liquid environments were performed, with remarkable results.

The researchers created a composite thin film composed of graphene and bacterial cellulose nanofibers. In this material, the bacterial cellulose nanofibres act as the host and the graphene as the filler material. Due to its excellent conductive properties, it was reported that graphene does not require the addition of a conductive filler material, unlike many composites. The Researchers constructed the composite using a combination of wet chemical, blending, sonication (Cole-Parmer), centrifugal (Centrifuge 5810, Eppendorf), dialysis and sputtering (Equipment Support Co) methods.

Innovate UK launches graphene commercialization effort

Jul 11, 2017

Innovate UK's (London, UK) Knowledge Transfer Network (KTN) has launched a Graphene Special Interest Group that is focused, in part, on commercialization of graphene in composite materials applications.

The purpose of the special interest group is to provide a forum through which graphene suppliers can connect with composites fabricators to work together to integrate graphene into products. There are 80 companies in the Graphene Special Interest Group, a number that will hopefully to grow to 200-250.

Talga enters agreement with Heidelberg Cement to explore potential of graphene-enhanced cement applications

Jul 11, 2017

Talga Resources logo 2017Talga Resources has announced the execution of a nonbinding memorandum of understanding with Heidelberg Cement – a Germany-based multinational building materials producer and producer of concrete products.

Talga and Heidelberg have entered into the MOU in order to jointly explore business opportunities associated with Talga’s graphite and graphene based materials in carbon enhanced concrete applications for the building and construction sector.

A Graphene-MoS2 combination could assist in efficient splitting of water to create 'green' energy

Jul 10, 2017

Researchers from Florida State University, Penn State University, Tsinghua University in China and the Institute of Carbon Science and Technology in Japan have come to fascinating conclusions on how to produce pure hydrogen, a green energy fuel by splitting water.

Graphene-MoS2 combo to split water image

After experimenting with ways to use the compound molybdenum disulfide to split water, the team realized that the compound’s protons did not overlap well with that of hydrogen. They ultimately determined that the best way to split the hydrogen was to create an alloy with the molybdenum disulfide. They created a thin film with alternating graphene and tungsten-molybdenum layers.

Manipulating electron spin in graphene may enable ambient-temperature FETs

Jul 09, 2017

Researchers at Chalmers University, affiliated with the Graphene Flagship, have devised a graphene-based spin field-effect transistor with the ability to function at room temperature. The team used the spin of electrons in graphene and similar layered material heterostructures to fabricate working devices in a step towards combining memory devices and the logic of spintronics.

Graphene spintronics FETs image

The researchers demonstrated that the spin characteristics of graphene can be electrically regulated in a controlled way, even at an ambient temperature. In addition to possibly unlocking various probabilities in spin logic operations, this study also enables integration with magnetic memory elements in a device unit. If further advancements can assist in the production of a spin current without the need for charge flow, the amount of power needed will be considerably reduced, resulting in highly versatile devices.

PlanarTECH - The 2D Materials Solution ProviderPlanarTECH - The 2D Materials Solution Provider