New material may triple the capacity of a battery cell and cut charging times

Researchers at the Institute of Energy and Climate Research (IEK-1) in Germany have developed a material comprising tin oxide nanoparticles enriched with antimony, on a base layer of graphene, that can reportedly triple the capacity of a battery cell and dramatically cut the charging time.

"An important factor is the anode material," said Prof Dina Fattakhova-Rohlfing from the Institute of Energy and Climate Research (IEK-1), who led the research. "In principle, anodes based on tin dioxide can achieve much higher specific capacities, and therefore store more energy, than the carbon anodes currently being used. They have the ability to absorb more lithium ions. Pure tin oxide, however, exhibits very weak cycle stability - the storage capability of the batteries steadily decreases and they can only be recharged a few times. The volume of the anode changes with each charging and discharging cycle, which leads to it crumbling."

Researchers explain the phenomenon of particle-antiparticle annihilation in graphene

Researchers from the Moscow Institute of Physics and Technology (MIPT) in Russia and Tohoku University in Japan have explained the phenomenon of particle-antiparticle annihilation in graphene, recognized by specialists as Auger recombination.

Teams explain the phenomenon of particle-antiparticle annihilation in graphene imageTwo scenarios of electron-hole recombination in graphene: radiative recombination (left) and Auger recombination (right) in which the energy is picked up by an electron passing by

Despite persistently being spotted in experiments, it was thought to be prohibited by the fundamental physical laws of energy and momentum conservation. The theoretical explanation of this process has until recently remained one of the greatest puzzles of solid-state physics.

Versarien enters commercial agreement with MediaDevil to launch products with its Nanene GNPs

Versarien LogoVersarien has announced that it has entered into a commercial agreement with PhoneDevil ("MediaDevil") to launch a new range of earphones and other audio equipment and accessories which will feature Versarien's proprietary Nanene graphene nano platelets and utilize the Nanene brand. In addition, the companies are at an advanced stage of launching a range of mobile phone and tablet device accessories utilizing Nanene, which will also feature the Nanene branding.

The products, which will initially focus on earphones, will be sold on MediaDevil's online platform, in addition to other online retail platforms such as Amazon, along with being supplied to high street retailers and MediaDevil's distribution partners globally. The agreement will see Versarien's Nanene brand feature on all product packaging, for which Versarien will receive a royalty on each product sold.

G3 launches G3-Fireshield Technology, a graphene-based line of components for the reduction of battery fires

Global Graphene Group (G3) logo imageGlobal Graphene Group (G3), the holding company of Angstron Materials and Nanotek Instruments, has announced G3-Fireshield Technology – a suite of next generation battery components to dramatically reduce the risk of fire occurrences in EVs, portable electronics, and a range of other devices.

G3 states that this breakthrough is the first of its kind to overcome the intrinsic flammability problems associated with multiple battery material components. G3 explains that a conventional Li-ion battery is made up of three primary components: a negative electrode, a separator soaked in electrolyte solution, and a positive electrode. At elevated temperatures, brought on by mechanical, electrical or thermal abuse, each of these components undergoes chemical and/or structural changes that release energy from the cell in harmful ways.

Rice University team creates 3D objects from graphene foam

Rice University scientists have developed a simple way to create conductive, 3D objects made of graphene foam. The resulting objects may offer new possibilities for energy storage and flexible electronic sensor applications, according to Rice chemist Prof. James Tour.

Rice team creates 3D objects from graphene foam image

The technique is an extension of groundbreaking work by the Tour lab that produced the first laser-induced graphene (LIG) in 2014 by heating inexpensive polyimide plastic sheets with a laser. The laser burns halfway through the plastic and turns the top into graphene that remains attached to the bottom half. LIG can be made in macroscale patterns at room temperature.

Researchers use graphene to increase the sensitivity of diagnostic devices

Researchers at the University of Pennsylvania have used graphene to increase the sensitivity of diagnostic devices, in particular those used to monitor and treat HIV. The team combined a trick of DNA engineering which involves an engineered piece of DNA called a hairpin, with biosensors, increasing the sensitivity of the sensors by a factor of 50,000 in less than an hour.

Researchers used graphene to increase the sensitivity of diagnostic devices image

The biosensorsare made with graphene, and so can be used as an extremely sensitive way of detecting biological signals, measuring the current that flows through graphene surface in the presence of biomolecules. When DNA or RNA molecules bind to the graphene, it produces a big change in the conductivity of the atomically thin material, allowing the researchers to detect infections and to measure viral loads.

Versarien - Think you know graphene? Think again!Versarien - Think you know graphene? Think again!