Rice team modifies laser-induced graphene process to create micron-scale patterns in photoresist

A Rice University team has modified its laser-induced graphene technique to make high-resolution, micron-scale patterns of the conductive material for consumer electronics and other applications. Laser-induced graphene (LIG), introduced in 2014 by Rice chemist James Tour, involves burning away everything except carbon from polymers or other materials, leaving the carbon atoms to reconfigure themselves into films of characteristic hexagonal graphene. The process employs a commercial laser that “writes” graphene patterns into surfaces that to date have included wood, paper and even food.

Rice lab uses laser-induced graphene process to create micron-scale patterns in photoresist image

The new version writes fine patterns of graphene into photoresist polymers, light-sensitive materials used in photolithography and photoengraving. Baking the film increases its carbon content, and subsequent lasing solidifies the robust graphene pattern, after which unlased photoresist is washed away.

Researchers turn 'magic angle graphene' into insulator or superconductor by applying an electric voltage

Researchers at ETH Zurich, led by Klaus Ensslin and Thomas Ihn at the Laboratory for Solid State Physics, have succeeded in turning specially prepared graphene flakes either into insulators or into superconductors by applying an electric voltage. This technique is even said to work locally, meaning that in the same graphene flake regions with completely different physical properties can be realized side by side.

A material-keyboard made of graphene imageThe material keyboard realized by the ETH Zurich researchers. Image by ETH Zurich/F. de Vries

The material Ensslin and his co-​workers used is known as “Magic Angle Twisted Bilayer Graphene”. The starting point for the material is graphene flakes - the researchers put two of those layers on top of each other in such a way that their crystal axes are not parallel, but rather make a “magic angle” of exactly 1.06 degrees. “That’s pretty tricky, and we also need to accurately control the temperature of the flakes during production. As a result, it often goes wrong,” explains Peter Rickhaus, who was involved in the experiments.

Tirupati Graphite develops 'ground-breaking' graphene-aluminium (Al-Gr) composite

Tirupati Graphite has announced that its research center has developed a 'ground-breaking' graphene-aluminium (Al-Gr) composite, which reportedly exhibits significantly higher conductivity and strength properties over aluminium and could be used as a substitute for copper.

The specialist graphite and graphene producer said it was engaged with potential end users including a FTSE100 company for the composite’s potential use replacing copper in thermal, power and propulsion systems, providing significant environmental advantages owing to reduced weight.

New method to produce graphene nanoribbons could promote use in telecommunications applications

University of Wisconsin–Madison researchers have fabricated graphene into the smallest ribbon structures to date, using a method that is said to make scaling-up simple. In tests with these tiny ribbons, the scientists discovered they were closing in on the properties they needed to move graphene toward usefulness in telecommunications equipment.

Flexible, easy-to-scale nanoribbons move graphene toward use in tech applications imageImage credit: University of Wisconsin−Madison

“Previous research suggested that to be viable for telecommunication technologies, graphene would need to be structured prohibitively small over large areas, (which is) a fabrication nightmare,” says Joel Siegel, a UW–Madison graduate student in physics professor Victor Brar’s group and co-lead author of the study. “In our study, we created a scalable fabrication technique to make the smallest graphene ribbon structures yet and found that with modest further reductions in ribbon width, we can start getting to telecommunications range.”

Graphene oxide gives a boost to new intranasal flu vaccine

Researchers at Georgia State University and Emory University have developed an intranasal influenza vaccine using recombinant hemagglutinin (HA), a protein found on the surface of influenza viruses, as the antigen component of the vaccine.

They also created a two-dimensional nanomaterial (polyethyleneimine-functionalized graphene oxide nanoparticles) and found that it displayed potent adjuvant (immunoenhancing) effects on influenza vaccines delivered intranasally.

Viritech's future hydrogen-powered hypercar to use “graphene-reinforced hydrogen pressure vessels”

A British engineering company called Viritech is working on an ambitious hydrogen-powered hypercar. Dubbed the Apricale, it is being designed primarily as a technical showcase for the company’s hydrogen fuel-cell technology and aims to demonstrate the advantages of hydrogen vehicles over electric powertrains. The hypercar will be sold in limited numbers for around £1.5 million (~$2 million).

Viritech's Apricale graphene-enhanced hydrogen car image

In order to lower the weight of the Apricale’s hardware, it features graphene-reinforced hydrogen pressure vessels. It was explained that the hydrogen storage tanks form part of the structure of the chassis to reduce weight and cost.

G6 Materials reported its financial results for Q1 2021

G6 Materials (Formerly called Graphene 3D Lab) announced its financial results for Q1 2021, with revenues of $263,425 CAD and a net loss of $321,152.

G6 Materials banner

Looking back at the last nine-month period (ended February 28, 2021), G6's revenues were $1.94 million CAD, up 276% from $515,930 in the prior year. The increase in revenues was attributed to consulting services provided to third-party clients, the ongoing sale of the Company’s air purification products and the receipt of a one-time payment as per the terms of a license and option agreement.