Graphene-Info launches a nanomaterial brokerage service

Finding your way through the fragmented graphene market can be challenging. There are many producers, each making its own materials and targeting different applications. Materials on the market range from pristine graphene sheets to graphene nanoplatelets with different properties and from graphene composites to graphene inks.

If you're looking to adopt graphene in your product or as part of your manufacturing process, you may find our new nanomaterial brokerage service useful. We help you find the best materials for your project and the best production partner. We’ll work together to define the parameters of your desired materials, identify currently available graphene or other nanomaterials on the market, choose the best material for your needs and help you reach the right production partner and secure the best price.

We'll be happy to work together, contact us now for all of your graphene needs!

Read the full story Posted: May 25,2015

Scientists design a large-scale roll-to-roll graphene manufacturing process

Researchers at MIT and the University of Michigan developed a new roll-to-roll manufacturing method, that promises to enable continuous production using a thin metal foil as a substrate, in an industrial process where the material is deposited onto the foil as it moves from one spool to another. The resulting size of the sheets would be limited only by the width of the rolls of foil and the size of the chamber where the deposition would take place.

The new process is an adaptation of a CVD method already used at MIT (and additional places) to make graphene. The new system uses a similar vapor chemistry, but the chamber is in the form of two concentric tubes, one inside the other, and the substrate is a thin ribbon of copper that slides smoothly over the inner tube. Gases flow into the tubes and are released through precisely placed holes, allowing for the substrate to be exposed to two mixtures of gases sequentially. The first region is called an annealing region, used to prepare the surface of the substrate; the second region is the growth zone, where the graphene is formed on the ribbon. The chamber is heated to approximately 1,000 degrees Celsius to perform the reaction.

Read the full story Posted: May 21,2015

NRL and University College purchase Oxford Instruments' CVD equipment

The U.S Naval Research Laboratory (NRL) and University College, London, recently purchased Oxford Instruments' plasma processing Nanofab equipment using CVD, PECVD and ICPCVD techniques. 

The Nanofab enables the fabrication of nanostructured materials such as graphene, carbon nanotubes and other 1D and 2D nanomaterials. It combines several essential features for high performance growth such as a high temperature heater capable of processing up to 200 mm wafers, shower head technology, automatic load lock for wafer handling as well as flexible options for liquid/solid precursor delivery.

Read the full story Posted: May 21,2015

Future Markets sees a $25-45 million graphene materials market in 2015

Future Markets released a new market report (The Global Market for Graphene to 2025) in which they estimate that the graphene market (mostly raw materials sales) was about $9-12 million in 2013 and $15-20 million in 2014. They estimate the market to grow to around $25-45 million in 2015.

According to the report, there is currently an oversupply situation in the graphene market - especially for low quality graphene. Most graphene sales are of graphene flakes (nanoplatelets) and conductive inks, while larger graphene sheets grown using CVD are used mainly for R&D. The main markets for graphene in the next 5-7 years will be Lithium batteries, conductive inks, sensors, supercapacitors, composites and transparent conductive films.

Read the full story Posted: May 21,2015

MIT scientists couple graphene with hBN to control light waves

MIT researchers managed to use graphene, deposited on top of a similar 2D material called hexagonal boron nitride (hBN), to couple the properties of the different 2D materials to provide a high degree of control over light waves. They state this has the potential to lead to new kinds of light detection, thermal-management systems, and high-resolution imaging devices. 

Both materials are structurally alike (in that they're both composed of hexagonal arrays of atoms that form 2D sheets), but they react to light differently. These different reactions, though, were found by the researchers to be complementary, and assist in gaining control over the behavior of light. The hybrid material blocks light upon applying a particular voltage to the graphene, while allowing a special kind of emission and propagation, called hyperbolicity, when a different voltage is applied. This means that an extremely thin sheet of material can interact strongly with light, allowing beams to be guided, funneled, and controlled by voltages applied to the sheet. This poses a phenomenon previously unobserved in optical systems. 

Read the full story Posted: May 20,2015

Northwestern team develops graphene-based inks for 3D printing robust and flexible structures

Researchers at Northwestern University designed a method to print 3D structures using graphene nanoflakes, by developing a graphene-based ink that can be used to print large, robust 3D structures. This fast and efficient method may open up new opportunities for using graphene printed scaffolds and various other electronic or medical applications.

The relatively high volume of graphene flakes in the ink (60-70%), combined with the use of bio-compatible elastomer and evaporating solvents, grants the material electrical conductivity and mechanical strength, without making the printed objects brittle. Once the ink is extruded, one of the solvents in the system evaporates right away, causing the structure to solidify almost immediately. The presence of the other solvents and the interaction with the specific polymer binder chosen also has a significant contribution to its resulting flexibility and properties. Since it holds its shape, it is possible to build larger, well-defined objects.

Read the full story Posted: May 20,2015

Graphene infused with boric acid makes for super-performance supercapacitors

Scientists at Rice University designed a boric acid-infused graphene microsupercapacitor with quadrupled ability to store an electrical charge, while greatly boosting its energy density. This design may see potential applications in wearable electronics, as well as many other flexible electronics uses.

The scientists used commercial lasers to create thin, flexible supercapacitors by burning patterns into common polymers. The laser burns away everything except for the carbon, to a depth of 20 microns on the top layer, which becomes a foam-like matrix of interconnected graphene flakes. They found that first infusing the polymer with boric acid, resulted in major performance advantages.

Read the full story Posted: May 19,2015

Ionic Industries plans for a GO-SuperSand pilot plant

Ionic Industries, a wholly owned subsidiary of the Australian Strategic Energy Resources, has released the results of an engineering scoping study for its planned pilot plant, to compliment the previously released marketing study for SuperSand. The studies confirm the economic viability of the planned pilot scale graphene oxide and SuperSand facility.

Ionic has commissioned Minnovo Pty Ltd, an independent engineering group, to examine the feasibility of a pilot plant to produce graphene oxide (GO) and multiple SuperSand products using Ionic’s technology. Ionic will concentrate on two areas where its research and development teams have already made significant advances: graphene based high performance energy storage devices, and filtration in various industries for environmental pollutant decontamination and resource extraction.

Read the full story Posted: May 18,2015

Talga chooses new demonstration plant location

Talga Resources recently announced its plan to construct a graphene demonstration plant in central Germany. Now, the company declared it has chosen a leased site on which to build the demo plant. The German site is within the Rudolstadt-Schwarza chemical processing hub in the state of Thuringia near the major regional town of Jena and will include a 1,248m2 production area, 323m2 office space and 1,167m2 ore dressing/warehouse.

Talga can now make preparations to commence next stage upscaling work on graphite ore mined from its flagship Vittangi project in Sweden, possibly as early as July of this year. It is also located just 35 kilometres from Talga’s Thuringia-based research partner, Friedrich-Schiller University at Jena.

Read the full story Posted: May 18,2015

Graphene ink used for printing RF antenna suitable for RFID and sensors

Researchers at the University of Manchester, along with UK graphene manufacturer BGT Materials, printed a radio frequency antenna using compressed graphene ink. The antenna worked well enough to make it practical for use in radio-frequency identification (RFID) tags and wireless sensors, according to the researchers. Furthermore, the antenna is flexible, environmentally friendly and could even be cheaply mass-produced. 

The research team found a binder-free way to increase the conductivity of graphene ink. They accomplished this by first printing and drying the ink, and then compressing it with a roller. Compressing the ink increased its conductivity by more than 50 times, and the resulting "graphene laminate" was almost two times more conductive than previous graphene ink made with a binder.

Read the full story Posted: May 18,2015