August 2019

New laser printing method rapidly and efficiently yields textiles embedded with graphene supercapacitors

Scientists from RMIT University in Melbourne, Australia, have developed a cost-efficient and scalable method for rapidly fabricating textiles that are embedded with energy storage devices. The team reports that in just three minutes, the method can produce a 10x10cm smart textile patch that's waterproof, stretchable and readily integrated with energy technologies like graphene supercapacitors, laser printed directly onto the textiles.

Schematic of the fabrication steps for the laser-printed graphene solar energy storage image

As a proof-of-concept, the researchers connected the supercapacitor with a solar cell, delivering an efficient, washable and self-powering smart fabric that overcomes the key drawbacks of existing e-textile energy storage technologies.

Read the full story Posted: Aug 28,2019

German researchers study the biological risk potential of graphene quantum dots

A team of researchers from the Physics, Medicine and Chemistry departments at Heinrich Heine University Düsseldorf (HHU) has examined if graphene nanoparticles are potentially dangerous for the organism and how cells cope with them once they have been incorporated.

Two stem cells containing carbon nanoparticles and cell nuclei imagemicroscopy images of living cells cultured for 36 h without GQDs (left) and with GQDs (right) as observed (top row) and merged with the bright field images (bottom row)

Nanoparticles can be absorbed in body cells, and two aspects to this feature exist. First, it makes nanoparticles good vehicles for transporting a broad range of compounds or substances attached to them into normal diseased cells in a targeted manner. On the other hand, they can also pose health risks.

Read the full story Posted: Aug 28,2019

Will graphene oxide be the answer to mosquito bites?

A new study by Brown University shows that graphene sheets can block the signals mosquitoes use to identify a potential blood 'donor', which may enable a new chemical-free approach to mosquito bite prevention.

Graphene oxide may be the answer to mosquito bites image

The researchers showed that multilayer graphene can provide a two-fold defense against mosquito bites. The ultra-thin yet strong material acts as a barrier that mosquitoes are unable to bite through. At the same time, experiments showed that graphene also blocks chemical signals mosquitoes use to sense that a blood meal is near, blunting their urge to bite in the first place. The findings suggest that clothing with a graphene lining could be an effective mosquito barrier, the researchers say.

Read the full story Posted: Aug 27,2019

Graphene interconnects to advance high-speed super-computers

In November 2018, researchers from the University of California, Santa Barbara presented a paper on CMOS-compatible graphene interconnects. Following this work, a team of University of California Santa Barbara (UCSB) engineering researchers recently came out with a method to utilize nanometer-scale doped multilayer graphene (DMG) interconnects well suited to the mass-production of integrated circuits.

For more than 20 years interconnects have been manufactured using copper as the base material, yet, the limitations of this metal when shrinking it to the nanoscale resistivity increase, which poses a fundamental threat to the $500 billion semiconductor industry, say researchers at UCSB. Graphene holds the potential to resolve this issue as a global desire for smarter, faster, lighter and affordable technology and devices continues to expand.

Read the full story Posted: Aug 25,2019

Graphene and other 2D materials form an enhanced heat protector for electronics

Researchers from Stanford, NIST, Theiss Research and several others have designed a new heat protector that consists of just a few layers of atomically thin materials, to protect electronics from excess heat.

Cross-section schematic of Gr/MoSe2/MoS2/WSe2 sandwich on SiO2/Si substrate imageCross-section schematic of Gr/MoSe2/MoS2/WSe2 sandwich on SiO2/Si substrate, with the incident Raman laser

The heat protector can reportedly provide the same insulation as a sheet of glass 100 times thicker. We’re looking at the heat in electronic devices in an entirely new way, said Eric Pop, professor of electrical engineering at Stanford and senior author of the study.

Read the full story Posted: Aug 22,2019

Skeleton Technologies' graphene-based supercapacitors to power Škoda trams in Mannheim

Skeleton Technologies, European developer of graphene-based supercapacitors and energy storage systems for transportation and grid applications, will supply supercapacitor systems to Å koda Electric, a traction equipment manufacturer, for 114 trams to be delivered by Å koda Transportation to Mannheim, Heidelberg, and Ludwigshafen in Germany.

The system recuperates the braking energy of the trams and uses it for re-acceleration, saving energy and decreasing costs. Supercapacitors are ideal for this application due to their high efficiency, reliability, and ability to recharge in seconds.

Read the full story Posted: Aug 22,2019

New graphene porous fibers may improve the sensitivity of wearable sensors

Chinese researchers from the Shanghai Institute of Microsystem and Information Technology, under the Chinese Academy of Sciences, have developed a new type of graphene porous fibers decorated with nanoballs and high gauge factors to improve the sensitivity of wearable sensors. The team produced a structural design to reduce the contact area between the graphene and polymer to enhance sensitivity.

The team explained that wearable textile strain sensors, perceiving and responding to human stimuli, are essential parts of wearable electronics. But subtle strains detection on human bodies is still limited to low sensitivity within current sensors.

Read the full story Posted: Aug 22,2019

Graphene takes a step towards enabling end-users to maintain their own resistance standards

Recent research by NPL, Oxford Instruments, Chalmers University and Graphensic has enabled the quantum Hall effect to be realized at both lower magnetic fields and higher temperatures, whilst still retaining part per billion accuracies.

The long-term collaboration between NPL, Chalmers University of Technology and Graphensic has resulted in a big advance in graphene samples. Epitaxial graphene (epigraphene) has been grown on silicon carbide and has better performance at higher temperatures and lower magnetic field than was previously possible. In practical terms, it has also removed the difficult process of fine-tuning the carrier density and means the ‘table-top’ system can be warmed up and cooled back down and the plateau stays where it is set with no user intervention.

Read the full story Posted: Aug 21,2019