Log9 Materials bets on graphene-based aluminium fuel cells for future EVs

India-based Log9 Materials believes that the key to better EVs is to focus on energy-generation, instead of energy storage. Log9 Materials says that a car powered by aluminium fuel cells can have a range of 1000 km post which the aluminium plates can be replaced within minutes.

According to Log9, aluminium fuel cells would primarily use three components – aluminium, water, and carbon in the form of graphene. In simple words, there’s water between layers of graphene, and when aluminium comes in contact with water, it corrodes – releasing energy. Log9 explains that procuring raw materials for aluminium fuel cells is much simpler than those for lithium-ion batteries which use lithium and cobalt, so manufacturing cost can be considerably lower for aluminium fuel cells than lithium-ion battery packs.

Meet the Graphene-Info team at MWC 2020

The Graphene-Info team is excited to announce its attendance at the Mobile World Congress 2020 on February 24-27 in Barcelona, Spain. The Mobile World Congress (MWC) is the world's largest gathering for the mobile industry, organized by the GSMA. It features a large exhibition, conference programme and networking opportunities.

For several years, the MWC event hosts a special graphene pavilion organized by the Graphene Flagship. This year, the Graphene Pavilion is promised to be even larger than before!

New graphene-based lithium-air battery may enable longer-running electric cars

Researchers at the Korean Daegu Gyeongbuk Institute of Science and Technology (DGIST) have fabricated an electrode using nickel cobalt sulphide nanoflakes on a sulfur-doped graphene, leading to a long-life battery with high discharge capacity. This improvement of lithium-air batteries' performance may bring us a step closer to electric cars that can use oxygen to run longer before they need to recharge.

"The driving distance of electric cars running on lithium-ion batteries is about 300 kilometers," says chemist Sangaraju Shanmugam of DGIST. "This means it's difficult to make a round trip between Seoul and Busan on these batteries. This has led to research on lithium-air batteries, due to their ability so store more energy and thus provide longer mileage."

New graphene-enhanced products raise old questions

When speaking of graphene in terms of commercialization, the general impression is that "a killer application has not yet been found". While this is not a false concept, it does not do justice with the now-budding graphene world. It can easily be stated that many graphene applications are being developed. This has been true for years, but various commercial products are starting to pop up, hopefully heralding the beginning of a more steady stream of commercialization.

Huawei Mate P30 Pro photo

Among these applications, one can point to cooling technology like Cryorig's CPU cooling system or Huawei's Mate 30 X smartphone, which sports a graphene film cooling technology. Various footwear and sports equipment products have also been launched, along with more technical products like oil additives and coatings. The list goes on and on, and there are even graphene-enhanced sanitary napkins on the market!

Graphene exhibits strange ‘melting’ behavior

Physicists from the Moscow Institute of Physics and Technology and the Institute for High Pressure Physics of the Russian Academy of Sciences have set out to refine the melting curve of graphite using computer modeling, and made interesting observations on graphene's melting properties.

The team'a results show that the liquid carbon structure undergoes changes above the melting curve of graphene. The researchers explain that no graphene melting experiments have been conducted. Previously, computer models predicted the melting point of graphene at 4,500 or 4,900 K. Two-dimensional carbon was therefore considered to have the highest melting point in the world.