High-resolution gravure printing of graphene for biomedical applications

INTRODUCTION

- Objectives:
 - Roll-to-roll printing of graphene electrodes on large-area polymer foils
 - Apply biofunctional coatings (e.g., proteins) on printed graphene structures
 - Fabrication of biosensors for impedimetric or electrochemical measurements

EXPERIMENTAL

- Ink composition
 - Basis: graphene ink for screen printing
 - Various solvents and solvent concentrations
 - Modified milling of graphene flakes
 - Fabrication of printing cylinders
 - Masking and chemical etching
 - Alternatively direct engraving with ultrashort pulse laser
 - Gravure printing with graphene ink
 - PET foil (50 µm)
 - Corona activation of PET foil (600 W)
 - Printing speed 20 – 30 m/min
 - Electrical characterization of printed graphene electrodes (sheet resistance measurements)
 - Cell adherence and cell growth
 - Cytotoxicity testing according ISO 10993 with MRC5 (human fibroblasts)
 - Further tests with TZM-bl cells (human cervical carcinoma)

CONCLUSION / OUTLOOK

- Roll-to-roll gravure printing of graphene ink with line width < 60 µm on PET foils
- Sheet resistance of gravure printing graphene ink similar to conventional screen printing ink
- Good compatibility with biological cells
- Parameters to be optimized for smaller line widths and more homogeneous structures
- Patterning of proteins to be established

RESULTS

- Printing cylinder
 - Customized cell geometry for graphene ink
 - Line width and orientation influence etching behaviour
 - Small lines at high depth for sufficiently high ink transfer

Gravure printed graphene electrodes on PET film

- Thickness of printed structures: 2 – 5 µm
- Minimum line width < 60 µm
- Structure quality depends on cell depth, grid width and orientation (angle) relative to printing direction

Sheet resistance (gravure vs. screen printing)

- Adapted inks show similar values compared with original screen printing ink
 - Screen printing ink: 12 – 15 Ω/sq. (at 25 µm)
 - Adapted gravure printing ink: 15 – 20 Ω/sq.

Cell adherence and cell growth

- Gravure graphene printing inks are not toxic to cells
- Reduced cell adherence on pure graphene structures
- Adherence proteins on graphene improve cell adhesion

CONSORTIUM / PROJECT FUNDING

- AiCuris
- Saueressig
- cellasys
- Haydale
- Innovate UK
- Fraunhofer IZI
- Technology Strategy Board

Figure 1. Biosensor structure on printing cylinder (40 µm lines)

Figure 2. Left: Printed graphene patterns on PET foil (web width: 200 mm), top right: SEM image of graphene surface, bottom right: biosensor with IDA electrodes.

Figure 3. Left: Bright-field image of adhered cells on pure graphene structures, middle and right: fluorescent cells on graphene without (middle) and with (right) adherence protein.