Article last updated on: Jan 25, 2019

In May 2015, researchers at Northwestern University designed a method to print 3D structures using graphene nanoflakes, by developing a graphene-based ink that can be used to print large, robust 3D structures. This fast and efficient method may open up new opportunities for using graphene printed scaffolds and various other electronic or medical applications. Also in May 2015, researchers at Michigan Technological University progressed in their work to 3D print replacement nerves using 3D bioprinting techniques. The team has developed polymer materials that can act as a scaffold for growing tissues and is working on integrating graphene as the electrical conductor.

In March 2015, U.S-based Local Motors declared plans to 3D print vehicles within 12 hours, reinforcing extruded printed material with graphene. The company reported significant progress in its additive manufacturing technology since it unveiled its Strati vehicle. The company was looking to reduce the print time to 12 hours, with a four to five-hour assembly time, and had been speaking to a Korean firm about sourcing graphene for extruding in composite 3D printing materials.

In July 2014, US-based Graphene Technologies announced a partnership with Stratasys to co-develop graphene-enhanced 3D printing materials.

A 12X12 meter 3D graphene-fiberglass printer was unveiled by Qingdao Unique Products Develop during a trade show in China. It is meant to print building in the future, according to the company, using a fiberglass-graphene composite that will allow the creation of very strong objects.

Grafoid, a Canadian based company, signed an agreement with Altamat to construct an atomization facility to produce MesoGraf graphene-based powders and filaments for 3D printing for use in a wide range of functionalized powders for 3D printing applications. Grafoid hopes to supply a wide range of Mesograf-based powders and filaments that will allow manufacturing companies in every industry to utilize additive manufacturing processes to produce their end products on demand, not solely for prototyping purposes.



Australian company 3D Graphtech Industries, established by CSIRO organization to investigate research opportunities in 3D printing using graphite and graphene inks, will jointly perform a white-paper study to identify technological problems in the 3D printing market that can be solved in an R&D program to provide a commercial solution.

US based AGT launched a similar research project in collaboration with Ukraine's Kharkiv Institute of Physics and Technology ("KIPT").

Further reading

The latest graphene 3D printing news:

Haydale launches next-gen graphene-enhanced 3D printing materials

A few years ago, several graphene producers released 3D printing materials enhanced with graphene. These materials enabled conductive non-metal materials, and enhanced the mechanical and thermal properties of these 3D printing filaments.

The market reaction, though, to these materials was cool. The materials did not provide a significant improvement, the price was high, and there were better alternatives available.

Researchers use 3D printing to make graphene aerogel flow-through electrodes for electrochemical reactors

Scientists at Lawrence Livermore National Laboratory (LLNL) are 3D printing graphene aerogel flow-through electrodes (FTEs), core components of electrochemical reactors used for converting CO2 and other molecules to useful products.

 LLNL optimizes flow-through electrodes for electrochemical reactors with 3D printing image

Benefiting from the design freedom afforded by 3D printing, the researchers demonstrated they could tailor the flow in FTEs, dramatically improving mass transfer – the transport of liquid or gas reactants through the electrodes and onto the reactive surfaces. The work opens the door to establishing 3D printing as a “viable, versatile rapid-prototyping method” for flow-through electrodes and as a promising pathway to maximizing reactor performance, according to researchers.

3D printed graphene reinforced concrete trials to begin in train station

HS2 London tunnels contractor Skanska Costain Strabag JV (SCS JV) is to pioneer the on-site of 3D printing of graphene-reinforced concrete. The technology, called ‘Printfrastructure’, promises to bring big environmental benefits and cost savings, if deployed more widely.

First proof of concept trials are scheduled to begin in the spring, using 5 tonne computer-operated robots. These will initially be used to build part of the retaining walls for the mainline out of Euston station as well as materials stores on the project.

Researchers develop graphene aerosol gel inks for printing micro-supercapacitors

Researchers from Kansas State University, led by Suprem Das, assistant professor of industrial and manufacturing systems engineering, in collaboration with Christopher Sorensen, university distinguished professor of physics, have shown potential ways to manufacture graphene-based nano-inks for additive manufacturing of supercapacitors in the form of flexible and printable electronics.

The team’s work could be adapted to integrate supercapacitors to overcome the slow-charging processes of batteries. Furthermore, Das has been developing additive manufacturing of small supercapacitors — called micro-supercapacitors — so that one day they could be used for wafer-scale integration in silicon processing.

University at Buffalo team 3D prints graphene aerogels for water treatment

University at Buffalo (UB) researchers have developed a novel 3D printed water-purifying graphene aerogel that could be scaled for use at large wastewater treatment plants.

UB's 3D printed ultra-light G-PDA-BSA aerogel imageUB's 3D printed ultra-light G-PDA-BSA aerogel. Image credit: UB and 3dprintingindustry.com

Composed of aerogel graphene and two bio-inspired polymers, the novel material is reportedly capable of removing dyes, metals and organic solvents from drinking water with 100% efficiency. Unlike similar nanosheets, the scientists’ design is reusable, doesn’t leave residue and can be 3D printed into larger sizes. The team now plans to commercialize its design for industrial-scale deployment.