Scientists manage to 3D print graphene aerogels with tailored architectures

Apr 24, 2015

Researchers at the Lawrence Livermore National Laboratory created graphene aerogel microlattices with an engineered architecture using a 3D printing technique known as direct ink writing. These lightweight aerogels have high surface area, excellent electrical conductivity, mechanical stiffness and exhibit supercompressibility (up to 90% compressive strain). In addition, the researchers claim that these 3D printed graphene aerogel microlattices show great improvement over bulk graphene materials and much better mass transport.

A common problem in creating bulk graphene aerogels is the occurrence of a largely random pore structure, thus excluding the ability to tailor transport and additional mechanical properties of the material for specific applications such as batteries and sensors. Making graphene aerogels with engineered architectures is greatly assisted by 3D printing, which allows to design the pore structure of the aerogel, permitting control over many properties. This development, as per the scientists, could open up the design space for using aerogels in novel and creative applications.

Will unzipped carbon nanotubes replace platinum in fuel cells?

Mar 10, 2015

A study conducted at Rice University shows that graphene nanoribbons, formed into a 3D aerogel and enhanced with boron and nitrogen, perform extremely well as catalysts for fuel cells and may even pose an alternative to platinum.

The scientists chemically unzipped carbon nanotubes into ribbons and then turned them into porous metal-free aerogels with various levels of boron and nitrogen, to test their electrochemical properties. It was found that the new material provides a wealth of active sites along the exposed edges for oxygen reduction reactions necessary for fuel cells performance.

Korean scientists design small and efficient graphene-polymer batteries

Feb 02, 2015

Researchers from the Korean Sungkyunkwan University announced the development of a sponge-like electrode material using graphene and a polymer that enables the assembly of a light and efficient graphene battery.

The electrode was made from porous graphene aerogel that was a result of combining alcohol and graphene. The graphene aerogel electrode material is easily compressed and highly durable, with about 90-99.9 percent of it filled with air and pores smaller than 100 nanometers that form a 3D web.

Graphene oxide helps create innovative insulating foam for houses

Nov 11, 2014

Researchers from Stockholm University managed to develop a super-insulating and fire retardant foam for house insulation by freezing together graphene oxide, cellulose nanofibers and clay nanorods.

The foam is highly porous and boasts lower thermal conductivity than traditional insulators like polystyrene and polyurethane. It is mechanically stiff, able to sustain great loads and also does not need to be laced with organic fire retardants (it is inherently fire retardant). The researchers believe this foam could even be fitted onto older buildings without tampering with their appearance.

Graphene aerogels are promising for supercapacitor electrodes

Oct 21, 2014

Researchers from Lawrence Livermore (LLNL) developed new supercapacitor electrodes made from modified graphene aerogels. Those electrodes feature high surface area, good electrical conductivity, chemical inertness and long-term cycling stability.

The researchers report that the graphene aerogel can improve the performance of commercial carbon-based (carbon black and binder materials) supercapacitor electrodes by more than 100%. The graphene aerogel electrodes have better density and pore size distribution, and increased conductivity.