Article last updated on: Jul 27, 2021

What is Graphene Oxide?

Graphene is a material made of carbon atoms that are bonded together in a repeating pattern of hexagons. Graphene is so thin that it is considered two dimensional. Graphene is considered to be the strongest material in the world, as well as one of the most conductive to electricity and heat. Graphene has endless potential applications, in almost every industry (like electronics, medicine, aviation and much more).

An ideal graphene sheet image

As graphene is expensive and relatively hard to produce, great efforts are made to find effective yet inexpensive ways to make and use graphene derivatives or related materials. Graphene oxide (GO) is one of those materials - it is a single-atomic layered material, made by the powerful oxidation of graphite, which is cheap and abundant. Graphene oxide is an oxidized form of graphene, laced with oxygen-containing groups. It is considered easy to process since it is dispersible in water (and other solvents), and it can even be used to make graphene. Graphene oxide is not a good conductor, but processes exist to augment its properties. It is commonly sold in powder form, dispersed, or as a coating on substrates.

Graphene Oxide vs Graphene scheme

Graphene oxide is synthesized using four basic methods: Staudenmaier, Hofmann, Brodie and Hummers. Many variations of these methods exist, with improvements constantly being explored to achieve better results and cheaper processes. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the graphene oxide.

Graphene oxide uses

Graphene Oxide films can be deposited on essentially any substrate, and later converted into a conductor. This is why GO is especially fit for use in the production of transparent conductive films, like the ones used for flexible electronics, solar cells, chemical sensors and more. GO is even studied as a tin-oxide (ITO) replacement in batteries and touch screens.

Graphene Oxide has a high surface area, and so it can be fit for use as electrode material for batteries, capacitors and solar cells. Graphene Oxide is cheaper and easier to manufacture than graphene, and so may enter mass production and use sooner.

GO can easily be mixed with different polymers and other materials, and enhance properties of composite materials like tensile strength, elasticity, conductivity and more. In solid form, Graphene Oxide flakes attach one to another to form thin and stable flat structures that can be folded, wrinkled, and stretched. Such Graphene Oxide structures can be used for applications like hydrogen storage, ion conductors and nanofiltration membranes.

Graphene oxide is fluorescent, which makes it especially appropriate for various medical applications. bio-sensing and disease detection, drug-carriers and antibacterial materials are just some of the possibilities GO holds for the biomedical field.

Buy Graphene Oxide

Graphene oxide is relatively affordable and easy to find, with many companies that sell it. It does, however, get confusing since different companies offer products that vary in quality, price, form and more - making the choice of a specific product challenging. If you are interested in buying GO, contact Graphene-Info for advisement on the right GO for your exact needs!

Further reading

The latest graphene oxide news:

New GO–MnO2 nano-filter can efficiently clean water from toxic dyes

Researchers from Korea's University of Seoul, Russia's RUDN University and several India-based institutes have created a nano-filter for water purification from synthetic dyes. The graphene-based composite can reportedly remove up to 100% of harmful compounds from water, and it can be used up to seven times without losing efficiency. In addition, the synthesis of the nanofilter itself is economical and environmentally friendly.

New green nanofilter can clean water from toxic dyes image

Synthetic dyes are used in industrial chemistry and pharmaceuticals. They reach the wastewater together with other industrial waste and pollute the environment. Existing methods of water purification are not quite practical, as the proposed adsorbents are usually disposable and work slowly. Therefore, scientists continue to look for effective and eco-friendly solutions to this problem. The team in this recent work has proposed a reusable graphene-based nanocomposite that can quickly absorb dyes from water.

Metalgrass offers a discounted yearly market reports package

Metalgrass (Graphene-Info) is now offering a new subscription service for enterprises that want access to our complete collection of market reports.

Metalgrass market reports package subscription - photo

For $3,500 per year, you will get an Enterprise License to all of our market reports. Metalgrass currently offers 12 market reports, plus 4 handbook guides, and all of these are included in the subscription (bought separately, these will cost over $10,000!). You will also have access to all new reports, updates and guides released in the future (during the yearly subscription period).

Our Enterprise License gives access to your entire organization: you can share the report with all the company employees via mail, shared server or any other digital way.

Graphene-Info updates all its graphene market report

Today we published new versions of all our graphene market reports. Graphene-Info provides comprehensive niche graphene market reports, and our reports cover everything you need to know about these niche markets. The reports are now updated to October 2021.

Graphene batteries market report 3D cover

The Graphene Batteries Market Report:

  • The advantages using graphene batteries
  • The different ways graphene can be used in batteries
  • Various types of graphene materials
  • What's on the market today
  • Detailed specifications of some graphene-enhanced anode material
  • Personal contact details into most graphene developers

The report package provides a good introduction to the graphene battery - present and future. It includes a list of all graphene companies involved with batteries and gives detailed specifications of some graphene-enhanced anode materials and contact details into most graphene developers. Read more here!

Novel graphene fiber electrode could assist in developing advanced therapies in bioelectronic medicine

An international team that included researchers from the ARC Centre of Excellence for Electromaterials Science (ACES) and the University of Houston has helped progress electroceutical research for treatment of diseases including rheumatoid arthritis, colitis and sepsis.

Coating steps of sutrodes imageCoating steps of extruded Pt-rGO electrodes. Image from article

The team released their latest paper, that builds on previous studies where the team reported on the 'Sutrode' - a graphene based electrode created using the fabrication technique known as fiber wet spinning.

Researchers take a closer look at a mysterious graphene oxide phenomenon

A team of researchers at UNSW has observed a unique phenomenon in graphene oxide (GO). The oxygen atoms in GO are normally attached in a rather chaotic way. At elevated temperatures, however, the oxygen atoms form more organized structures – by themselves. This process of ‘self-organization’ was found to drastically improve various properties of GO – for example, its electrical conductivity.

UNSW scientists solve decade-old graphene oxide puzzle image

For years, researchers have been aware that this phenomenon existed, but they could only demonstrate it using computational simulations. The new research, led by Dr. Rakesh Joshi at UNSW, successfully observed it for the first time in real life, using cutting-edge electron microscopy. While common microscopes use light to create a magnified image, electron microscopes use electrons. With this type of microscope, it is possible to observe single atoms, by magnifying what you’re looking at by a factor of 1,000,000.