3D printed bacteria could be used to reduce graphene oxide

Mar 26, 2017

Researchers at Delft University have shown that placing certain types of bacteria on flat sheets of graphene oxide can turn it into a reduced version of the compound (rGO) by pulling oxygen atoms off the material as they metabolize. This turns the popular process of GO reduction, normally done with chemicals or high heat, into a much cheaper, more environmentally friendly process.

3D printed bacteria reduces GO image

While the traditional method of reducing graphene with heat or chemicals is still more effective, the bacterial method could be very useful in the production of precise, small-scale graphene structures – such as those produced with a 3D printer. In this work, the researchers document how they modified a $300 CoLiDo 3D printer by replacing the extruder with a pipet tip and tubing system. “This alteration allows the liquid biological ink (‘bioink’) to be transported under ambient temperatures that are amenable to microbes, rather than the elevated temperatures that are applied to melt plastic filament,” the team explains.

A new graphene oxide coating to improve the performance of lithium-sulfur batteries

Mar 21, 2017

Researchers at Yale University have developed an ultra-thin coating material, based on graphene oxide, that has the potential to extend the life and improve the efficiency of lithium-sulfur batteries. The newly developed material is a dendrimer-graphene oxide composite film, that can be applied to any sulfur cathode.

GO coating to improve Li-sulfur batteries performance image

The researchers state that sulfur cathodes coated with the material can be stably discharged and recharged for more than 1,000 cycles, enhancing the battery’s efficiency and number of cycles. In addition, they said “the developed film is so thin and light it will not affect the overall size or weight of the battery, and thus it will function without compromising the energy and power density of the device”.

Rutgers licenses microwave-based graphene production method to Everpower

Mar 07, 2017

Rutgers University has licensed a technology that allows for the mass production of high-quality graphene at a reduced cost to Everpower International Holdings, a New York-based investment company engaged in investing in emerging technologies and their integration into China, that has recently announced a collaboration agreement with Haydale.

The method uses microwaves to produce high-quality graphene from graphene oxide, and has the potential to generate large quantities of it at low cost. “The ability to manufacture graphene on a large scale will allow Everpower to test a variety of products containing the material.”

Graphene-Info's Batteries, Supercapacitors, GO, Lighting, Displays and Graphene Investments Market Reports updated to March 2017

Mar 06, 2017

Today we published a new version of all our graphene market reports. Graphene-Info provides comprehensive niche graphene market reports, and our reports cover everything you need to know about these niche markets. The reports are now updated to March 2017.

Graphene batteries market report 3D cover

The Graphene Batteries Market Report:

  • The advantages using graphene batteries
  • The different ways graphene can be used in batteries
  • Various types of graphene materials
  • What's on the market today
  • Detailed specifications of some graphene-enhanced anode material
  • Personal contact details into most graphene developers

The report package provides a good introduction to the graphene battery - present and future. It includes a list of all graphene companies involved with batteries and gives detailed specifications of some graphene-enhanced anode materials and contact details into most graphene developers. Read more here!

Exeter team designs a novel method of engineering computer chips using graphene oxide

Mar 05, 2017

Researchers from the University of Exeter have developed a method using graphene oxide flakes that could be used to create the next generation of computers. The Exeter team used microfluidics technology to develop a new method of engineering computer chips that’s easier and less expensive than the current methodology.

The microfluidics approach uses minute channels to control the flow and direction of tiny quantities of fluid. The tests performed at the University of Exeter involved flakes of graphene oxide, mixed into the fluid, which was then mixed together in the channels to create the chips. The researchers used an advanced light-based procedure to facilitate the creation of three-dimensional structures that comprise the resulting chip.