What is Graphene Oxide?

Graphene is a material made of carbon atoms that are bonded together in a repeating pattern of hexagons. Graphene is so thin that it is considered two dimensional. Graphene is considered to be the strongest material in the world, as well as one of the most conductive to electricity and heat. Graphene has endless potential applications, in almost every industry (like electronics, medicine, aviation and much more).

An ideal graphene sheet image

As graphene is expensive and relatively hard to produce, great efforts are made to find effective yet inexpensive ways to make and use graphene derivatives or related materials. Graphene oxide (GO) is one of those materials - it is a single-atomic layered material, made by the powerful oxidation of graphite, which is cheap and abundant. Graphene oxide is an oxidized form of graphene, laced with oxygen-containing groups. It is considered easy to process since it is dispersible in water (and other solvents), and it can even be used to make graphene. Graphene oxide is not a good conductor, but processes exist to augment its properties. It is commonly sold in powder form, dispersed, or as a coating on substrates.

Graphene Oxide vs Graphene scheme

Graphene oxide is synthesized using four basic methods: Staudenmaier, Hofmann, Brodie and Hummers. Many variations of these methods exist, with improvements constantly being explored to achieve better results and cheaper processes. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the graphene oxide.

Graphene oxide uses

Graphene Oxide films can be deposited on essentially any substrate, and later converted into a conductor. This is why GO is especially fit for use in the production of transparent conductive films, like the ones used for flexible electronics, solar cells, chemical sensors and more. GO is even studied as a tin-oxide (ITO) replacement in batteries and touch screens.



Graphene Oxide has a high surface area, and so it can be fit for use as electrode material for batteries, capacitors and solar cells. Graphene Oxide is cheaper and easier to manufacture than graphene, and so may enter mass production and use sooner.

GO can easily be mixed with different polymers and other materials, and enhance properties of composite materials like tensile strength, elasticity, conductivity and more. In solid form, Graphene Oxide flakes attach one to another to form thin and stable flat structures that can be folded, wrinkled, and stretched. Such Graphene Oxide structures can be used for applications like hydrogen storage, ion conductors and nanofiltration membranes.

Graphene oxide is fluorescent, which makes it especially appropriate for various medical applications. bio-sensing and disease detection, drug-carriers and antibacterial materials are just some of the possibilities GO holds for the biomedical field.

Buy Graphene Oxide

Graphene oxide is relatively affordable and easy to find, with many companies that sell it. It does, however, get confusing since different companies offer products that vary in quality, price, form and more - making the choice of a specific product challenging. If you are interested in buying GO, contact Graphene-Info for advisement on the right GO for your exact needs!

Further reading

The latest graphene oxide news:

Metalgrass offers a discounted yearly market reports package

Metalgrass (Graphene-Info) is now offering a new subscription service for enterprises that want access to our complete collection of market reports.

Metalgrass market reports package subscription - photo

For $3,500 per year, you will get an Enterprise License to all of our market reports. Metalgrass currently offers 12 market reports, plus 4 handbook guides, and all of these are included in the subscription (bought separately, these will cost over $10,000!). You will also have access to all new reports, updates and guides released in the future (during the yearly subscription period).

Our Enterprise License gives access to your entire organization: you can share the report with all the company employees via mail, shared server or any other digital way.

Read the full story Posted: Oct 21,2021

Graphene-Info updates all its graphene market report

Today we published new versions of all our graphene market reports. Graphene-Info provides comprehensive niche graphene market reports, and our reports cover everything you need to know about these niche markets. The reports are now updated to October 2021.

Graphene batteries market report 3D cover

The Graphene Batteries Market Report:

  • The advantages using graphene batteries
  • The different ways graphene can be used in batteries
  • Various types of graphene materials
  • What's on the market today
  • Detailed specifications of some graphene-enhanced anode material
  • Personal contact details into most graphene developers

The report package provides a good introduction to the graphene battery - present and future. It includes a list of all graphene companies involved with batteries and gives detailed specifications of some graphene-enhanced anode materials and contact details into most graphene developers. Read more here!

Read the full story Posted: Oct 13,2021

Novel graphene fiber electrode could assist in developing advanced therapies in bioelectronic medicine

An international team that included researchers from the ARC Centre of Excellence for Electromaterials Science (ACES) and the University of Houston has helped progress electroceutical research for treatment of diseases including rheumatoid arthritis, colitis and sepsis.

Coating steps of sutrodes imageCoating steps of extruded Pt-rGO electrodes. Image from article

The team released their latest paper, that builds on previous studies where the team reported on the 'Sutrode' - a graphene based electrode created using the fabrication technique known as fiber wet spinning.

Read the full story Posted: Sep 27,2021

Researchers take a closer look at a mysterious graphene oxide phenomenon

A team of researchers at UNSW has observed a unique phenomenon in graphene oxide (GO). The oxygen atoms in GO are normally attached in a rather chaotic way. At elevated temperatures, however, the oxygen atoms form more organized structures by themselves. This process of ‘self-organization’ was found to drastically improve various properties of GO for example, its electrical conductivity.

UNSW scientists solve decade-old graphene oxide puzzle image

For years, researchers have been aware that this phenomenon existed, but they could only demonstrate it using computational simulations. The new research, led by Dr. Rakesh Joshi at UNSW, successfully observed it for the first time in real life, using cutting-edge electron microscopy. While common microscopes use light to create a magnified image, electron microscopes use electrons. With this type of microscope, it is possible to observe single atoms, by magnifying what you’re looking at by a factor of 1,000,000.

Read the full story Posted: Sep 15,2021

G6 Materials reports positive test results on its GO-based air purifier tech

G6 Materials has announced the results of an antimicrobial efficacy test on a prototype of its proprietary graphene-based air purifier, conducted by a US-based microbiological laboratory of The Intertek Group. The test reportedly showed that the concentration of pathogenic microorganisms present in the testing chamber was reduced by 99.9% over the duration of the experiment.

G6 Materials Air Purifier Prototype Reduces Pathogenic Microorganisms image

Two different pathogens were randomly chosen to be tested under each experiment, which were the E. coli bacteria and the Phi-X174 bacteriophage. The duration of the test was set to two hours.

Read the full story Posted: Sep 08,2021

Recent research and industry news on graphene oxide

Graphene oxide (GO), a form of graphene that includes oxygen-containing groups, has been the focus of much talk and speculation lately - most of which centered around its potential use in medical contexts.

Graphene Oxide vs Graphene scheme

However, GO is an interesting material all on its own, with great potential for various other uses and applications. It is studied for use in areas like membranes for audio devices and water filtration, sensors, solar cells, batteries and more.

Read the full story Posted: Aug 23,2021

How concerned should we be about graphene's toxicity?

The potential toxicity of graphene and graphene oxide has been on people's minds lately. This is an area that has always received some attention, but recently there have been rumors and wild speculations about the adoption of graphene oxide and the risks involved.

Grapene toxicity poll results (August 2021)

Researchers have been studying the toxicity of graphene and graphene oxide for many years. While these materials have not yet been established as completely safe for use, there are quite a few research results that indicate that graphene can be relatively safe under the appropriate conditions.

Read the full story Posted: Aug 18,2021

Graphenea Foundry: a platform for the manufacture of graphene-based devices

This is a sponsored post by Graphenea

Graphenea’s Semiconductor catalogue spans from 1x1 cm2 single layer graphene films on a variety of substrates, to fully customized graphene-based device architectures implemented on wafers up to 150mm. The unique vertical integration that Graphenea offers, that covers the graphene growth, its transfer, its device fabrication and post-processing, allows Graphenea to have full control of the manufacturing process, continuously monitoring this through quality control processes and checkpoints.

GFET wafers (Graphenea)

Graphenea Foundry offers three products and services, which cover all the graphene needs one may have.

Read the full story Posted: Aug 17,2021

Graphene oxide barrier to protect electronics, artwork and solar cells

Curtin University researchers have recently shown that applying a thin (and of course, invisible) layer of graphene oxide to silicon forms an impermeable barrier, which could be used to protect artwork, prevent corrosion of metals, and produce higher efficiency solar cells.

Lead author, Dr. Nadim Darwish from Curtin’s School of Molecular Life Sciences, said while protective layers on silicon were already used as an efficiency enhancer in devices such as solar cells and microchips, the procedure for forming these protective coatings was complicated and required highly specialized fabrication laboratories.

Read the full story Posted: Aug 11,2021

Graphene oxide helps create reusable wrapper to increase shelf life of fruits

Indian scientists have developed a graphene oxide composite paper, loaded with preservatives, that can be used as wrappers to help extend the shelf-life of fruits, stated the Department of Science and Technology.

In the currently used technology, preservatives are adsorbed by the fruit, causing chronic toxicity. In the team's new paper, the wrapper releases the preservative only when needed. The wrapper can also be reused, which is not possible with the present technology.

Read the full story Posted: Aug 10,2021