Article last updated on: Jan 25, 2019

The latest graphene sensor news:

FLAG-ERA announces funding for 10 new projects on graphene research and applications

FLAG-ERA has announced the funding of 10 new projects on graphene and related materials, which will become partnering projects of the Graphene Flagship. The projects split between basic and applied research and innovation, covering areas from magnetic memories and photodetectors to novel batteries and neural inter-faces.

The FLAG-ERA initiative establishes links between the EU-funded FET Flagship projects and national and regional funding agencies in Member States. Through different strategies, FLAG-ERA fosters multi-disciplinary collaborations to expand the scope of the Graphene Flagship and the Human Brain Project. Among these was their latest Joint Transnational Call (JTC) 2021, announced earlier this year. JTC 2021 has resolved funding for the 10 projects, seven of which involve partners from widening countries like Bulgaria, Hungary, Slovakia, Slovenia and Turkey.

GraphWear closes $20.5M Series B for a needle-free, graphene-powered glucose monitor

Graphwear, a startup developing graphene-based needle-free approaches to glucose monitoring, recently closed a $20.5 million Series B round. GraphWear is developing a skin-surface-level wearable made of graphene. The sensor is small, about the size of an Apple Watch — but the key piece of technology is actually housed on the bottom. It’s a thin slice of graphene that fits onto the back of the watch, or onto a sticker that can be worn on the abdomen.

Graphwear raises $20 million to promote graphene-based glucose sensors imageImage by Graphwear



This Series B round will be focused on helping the company build upon previous validation studies of the wearable, completing a pivotal trial and submitting for FDA clearance. The round was led by Mayfield, with participation from MissionBio Capital, Builders VC and VSC Ventures.

Combining graphene transistors with MOFs yields selective and sensitive sensors

Karlsruhe Institute Of Technology (KIT) and Technical University of Darmstadt researchers have developed graphene-enhanced sensors for molecules in the gas phase. The functional principle of this new type of sensors is based on sensitive graphene transistors and tailor-made organometallic coatings. This combination enables selective detection of molecules.

Process flow of graphene MOFs sensors imageFabrication of SURMOF/GFET process flow. Image from article

As a prototype, the authors of the new study demonstrated a specific ethanol sensor that, unlike currently available commercial sensors, does not react to other alcohols or moisture.

Swinburne startup 'SensFit' uses graphene-enhanced shoe sensors to detect health issues

A new Swinburne-led startup, SensFit Technologies, has developed a smart shoe with inbuilt sensors, aiming to improve the quality of life of older people through the early detection of dementia, diabetic ulcers and other physical activity issues.

Swinburne startup uses smart shoe sensors to detect health issues imageUnique sensor technology takes readings from the soles of the shoes. Image from Swinburne website

The unique technology is based on 87 smart sensors bonded with an innovative graphene ink that is embedded in the soles of a shoe. It was developed by startup co-founders Professor Franz Konstantin Fuss, a medical technologies researcher, and Dr. Nishar Hameed, whose research focuses on developing innovative technologies from advanced composite materials.

Graphene Biosensor Evolution: From devices on silicon to lower cost, more flexible biodegradable plastic

This is a guest-post by Jeffrey Draa, CEO at Grolltex - producing graphene biosensors on silicon chips today shows low yields, high cost and restrictive packaging options, limiting scalability and market penetration. But optimization may be here.

Monolayer, electronics grade graphene is propelling advanced biosensing in many key areas. Google the search term, ‘graphene biosensor’, and one will see thousands of next-generation, life enhancing applications being refined in research labs worldwide. This one atom thick material is creating biosensing and detection performance in speed and sensitivity not possible before. Areas such as cancer and virus detection, new drug discovery, genomics, allergens, glucose and many more are starting to see unimagined advances. By far, the number 1 use case for monolayer graphene films today is atomic level biosensing.