Graphene thermal conductivity - introduction and latest news - Page 2
Researchers develop graphene composite materials for efficient thermal management of Li-ion batteries
Researchers from China's Zhejiang University have developed a new thermal management system to prevent thermal runaway of Li-ion battery (LIB) cells, using hyperbolic graphene phase change composites. This addresses the safety concerns of LIB cells, mainly caused by thermal runaway. While phase change material systems already exist, the unresolved trade-off between high power and energy density greatly limits its practical applications.
The newly developed thermal management system relies on a composite material that consists of hyperbolic graphene framework and paraffin, and reportedly exhibits an impressive thermal conductivity of ∼30.75 W/mK at 12.5 wt% graphene loading and ultrahigh retention (90%) of latent heat, beyond that of most of the reported phase change composites.
Haydale announces steps to improve financial position, including disposal of Korean subsidiary
Haydale Graphene Industries has announced that it has completed a comprehensive business review and unveiled a strategy aimed at achieving near-term profitability while focusing on high-growth opportunities. Haydale said the review, initiated by a reconstituted board following the company's £3.1m funding raise in October, identified key areas for improvement, operational streamlining, and resource reallocation.
Haydale has reportedly decided to focus on two core business lines - heating ink-based energy efficiency products, and carbon capture technology.
Graphene Manufacturing Group demonstrates improved heat sink performance with THERMAL-XR
In a recent PR, Graphene Manufacturing Group (GMG) shared that it continues to advance the commercialization of its THERMAL-XR coating system with the product being tested with companies in multiple industries, including on heat sinks for electronics.
Third-party modelling indicates that applying THERMAL-XR to heat sinks can reduce their size by up to 39% while maintaining the same thermal performance, the company highlighted. This reduction could lead to savings in weight and material costs. The technology also lowers the maximum temperature of heat sinks by 23%, improving their efficiency.
Researchers develop a new process for laser-induced graphene smart textile that could improve space gear
Researchers from the Korea Advanced Institute of Science and Technology (KAIST), Korea Institute of Machinery & Materials and Seoul National University of Science and Technology (SEOULTECH) have shown that laser-induced graphene (LIG), patterned with femtosecond laser pulses, can serve as a versatile material for temperature/strain sensing, stray light absorption, and heat management for smart spacesuits and telescopes.
Direct laser writing of laser-induced graphene (LIG). Image from: Advanced Functional Materials
The team has developed a manufacturing technique that addresses the challenges posed by the harsh conditions that space equipment must function in. The scientists' new process uses precisely controlled laser pulses to transform a Kevlar's surface into a porous graphene structure, effectively converting ordinary Kevlar fabric into a multifunctional material.
Solidion develops a graphene-enabled battery fast-charging and cooling system
Solidion Technology has announced that it has been granted a patent on a cost-effective graphene-based strategy for enabling completion of charging in 5 minutes for a wide range of lithium batteries.

Range anxiety, the fear that an electric vehicle (EV) may run out of battery power during a trip, has long been regarded as a key reason for consumers' reluctance to adopt EVs. This issue is exacerbated by the notion that recharging batteries usually takes much longer time than refueling internal combustion engine vehicles (ICEVs). To be competitive with ICEVs, fast charging of EVs should be weather-independent and comparable in time as refueling a gasoline car. Variations in temperatures in different geographic regions and seasons poses a challenge in fast charging EV batteries, since batteries can behave very differently. None of today's EV batteries allow for fast charging at low temperatures.
Graphene Manufacturing Group updates on THERMAL-XR commercialization progress
Graphene Manufacturing Group (GMG) has provided a commercialization update on its THERMAL-XR Powered by GMG Graphene technology, highlighting ongoing customer engagements, testing, and industry recognition.
At a recent event in Brisbane, GMG re-launched its product, now branded as THERMAL-XR ENHANCE, which boasts improved heat transfer and corrosion protection capabilities. In a statement, GMG said that the rebranding from THERMAL-XR RESTORE reflects the product's expanded applications, including enhancing heat transfer in new HVAC equipment, a capability reportedly confirmed through third-party verification.
DUER launches graphene-enhanced jacket
DUER, an innovative denim company, has launched its new Performance Flannel that is enhanced with graphene. The fabric is said to regulate body temperature without feeling heavy, fight static and stay fresh longer.
“Graphene caught our attention as a Nobel prize-winning nano-fiber with exceptional performance properties that don’t impact a fabric’s weight, breathability, or soft feel,” said Gary Lennett, CEO of DUER. “We’ve integrated graphene into our Performance Flannel to provide enhanced thermal regulation— keeping you warm when it’s cold, and cool when it’s hot. Added to that, it fights static and keeps clothing fresh longer, marking a significant step in the future of textiles.”
Carbon Waters opens its first production unit
Carbon Waters has announced a major milestone with the installation of its first production unit at its facility in Pessac.
Since its inception, Carbon Waters been active in the field of graphene-based performance additives. In 2022, it launched the recurring production of high-performance and ready-to-use additive range, Graph‘Up. These additives are dedicated to anticorrosion paints, mechanical reinforcement, and thermal property optimization of polymers and composites. Summer 2024 marked the arrival of Carbon Waters' first production unit. This investment helps Carbon Waters to multiply its production capacity by fifteen, a major step forward in meeting growing industrial demand.
Xiaomi launches a graphene radiator capable of heating a room in a few seconds
Xiaomi has released its new Xiaomi Mijia Graphene Skirting Board Heater 2, a graphene radiator that boasts a powerful heating system 2.200W and a foldable format. The Xiaomi Mijia Graphene Skirting Board Heater 2 features a graphene heating technology heater capable of providing heat in just 3 seconds and heating an entire room to the desired temperature in just 15 minutes.
In 2022, Xiaomi launched the Mijia Graphene Baseboard Heater (Fire Edition). The device uses two graphene-based heating elements, and has a simulated flame function that uses an integrated humidifier and LEDs to generate the flame appearance. This new launch seems to be the next generation in the same product line.
Haydale and Jersey Energy Technologies announce underfloor heating pilot in Jersey
Haydale has announced that it has signed a contract with Jersey Energy Technologies ("JET"), a start-up company focused on providing energy efficiency solutions across the Channel Islands, to begin a pilot trial deploying Haydale's underfloor heaters within social housing in Jersey.
Haydale's underfloor heating system utilizes the Company's proprietary HDPlas functionalization technology to unlock the high-level thermal conductivity properties of graphene. Data gathered from Haydale's in-house prototype systems implies up to 30% lower operating cost for their functionalized graphene ink underfloor heating compared to standard wired systems running off mains power. In test conditions, the heaters, which can be uniformly and individually heated, have also shown improvements in flexibility, and durability; reaching maximum temperatures quickly. This presents a potential commercial solution to meet the demand for improved energy efficiency, reducing heating costs for residents without trade off.
Pagination
- Previous page
- Page 2
- Next page