Researchers find that graphene quantum dots are biodegradable by human enzymes

A study recently conducted by Graphene Flagship partners the University of Strasbourg and CNRS, France, in collaboration with Nanyang Technological University in Singapore, has shown that graphene quantum dots are biodegradable by two enzymes found in the human body.

Graphene quantum dots (GQDs) are tiny flakes usually smaller than five nanometres that have potential for many applications. GQDs are fluorescent, so they can absorb light and then emit it, often at a different wavelength. They are also so small that they can penetrate cells. Together, these properties pave the way to a wide array of applications in bioimaging, biosensing and new therapies - among other potential uses.

Graphene assists in studying gas dynamics at the nanoscale

Scientists from Delft University of Technology and the University of Duisburg-Essen have used the motion of graphene to identify noble gasses. These gasses are chemically passive and do not react with other materials, which makes it challenging to detect them.

Schematic of device geometry and gas effusion path imageSchematic of the device geometry and gas effusion path. Image from Nature Communications

Graphene's atomic thickness makes it a perfect filter material for gasses and liquids: graphene by itself it is not permeable, but small perforations make it very permeable. Moreover, the material is among the strongest known and withstands high stresses. Together, these two traits provide the perfect basis for new types of gas sensors.

Haydale updates that partner IRPC starts graphene-enhanced face masks production

Haydale Graphene IndustriesHaydale logo has announced that its partner IRPC has now completed the development project with Haydale and started production of its new washable functionalized graphene-enhanced fabric mask.

IRPC has placed a follow-on order for 200 kilograms of Haydale’s bespoke ink, with further orders anticipated, the advanced materials group said. The face masks are currently being produced for use internally within the IRPC group, with a forecasted external order book for 2021.

Graphene coating could help create higher energy density lithium-ion batteries

Researchers at Northwestern University and Clemson University in the U.S, along with researchers from Sejong University in Korea, have examined the origins of degradation in high energy density LIB cathode materials and developed graphene-based strategies for mitigating those degradation mechanisms and improving LIB performance.

Their research could be valuable for many emerging applications, particularly electric vehicles and grid-level energy storage for renewable energy sources, such as wind and solar.

Researchers achieve direct visualization of of quantum dots in bilayer graphene

Researchers at UC Santa Cruz have reported the first direct visualization of quantum dots in bilayer graphene, revealing the shape of the quantum wave function of the trapped electrons. The finding of this research could provide important fundamental knowledge, required for developing quantum information technologies based on bilayer graphene quantum dots.

Direct visualization of quantum dots reveals shape of quantum wave function imageImage from Nano Letters

"There has been a lot of work to develop this system for quantum information science, but we've been missing an understanding of what the electrons look like in these quantum dots," said corresponding author Jairo Velasco Jr., assistant professor of physics at UC Santa Cruz.

MSI is now shipping its graphene-enhanced backplate RTX 3000 graphic cards

Last month MSI revealed that it is utilizing graphene composites in its RTX 3000 series GPUs. The new graphic cards are now shipping globally (the cost in the US is $1,699).

 MSI uses graphene in its graphic cards image

MSI uses a graphene composite material as the backplate of the GPU, which is traditionally made of plastic. MSI says that the graphene composite is 4X stronger than its previous plastic backplate, and offers much higher (20X) heat dissipation performance.

GAC to test its "super-fast-charging battery" in production vehicles

After announcing its plan (In May 2020) to mass produce graphene-enhanced battery for EVs by the end of 2020, and setting up a unit that specializes in graphene and has begun research and development of fast-charging technology for electric vehicles in September 2020, GAC has now stated that it expects to test its battery in production vehicles by the end of this year, however - whether it can eventually be put into mass production will have to await the results of real-vehicle testing.

According to GAC's claim, the graphene "super-fast-charging battery" can be recharged to 85 percent in just eight minutes. If this proves to be true, the charging time will be comparable to the refueling time of traditional fuel cars, which by itself will be great news for the EV market.

Versarien enters $2.6 million agreement for graphene-enhanced defense-related applications

VersarienVersarien Logo has announced that it has been awarded a product development agreement for £1.95 million (around USD$2.6 million) by the Defense, Science and Technology Laboratory, a part of the Ministry of Defense. DSTL is responsible for ensuring that innovative science and technology contribute to the defense and security of the UK.

The Agreement is to develop graphene-loaded polymer composites for certain defense related applications, the details of which were not disclosed.

Directa Plus announces "fantastic achievement" with partner NexTech's graphene-enhanced prototype battery

Directa Plus logoDirecta Plus, which has recently signed a non-binding memorandum of understanding with lithium sulphur batteries company NexTech Batteries, has announced that using its G+ pristine graphene nanoplatelets, NexTech managed to achieve more than 400 watt-hours per kilogram in a practical system, "the holy grail" for many battery applications.

NexTech produced several prototypes using its proprietary cathode and electrolyte materials producing 410Wh/kg of specific energy at a weight only slightly below 30 grams. For comparison, standard lithium-ion batteries have an energy density of 100-265 Wh/kg.

Researchers examine Dirac fermion kinetics in 3D curved graphene

A team of researchers from Tohoku University, Okayama University of Science, University of Tsukuba, Osaka University and The University of Tokyo in Japan, in collaboration with Johns Hopkins University, has amplified 3D graphene's electrical properties by controlling its curvature.

"Our research showed the conservation and the degradation of the ultra-low dissipative transport of Dirac electrons on the 3D curved surface for the first time," said Yoichi Tanabe, leading author of the study.