Graphene interconnects to advance high-speed super-computers

In November 2018, researchers from the University of California, Santa Barbara presented a paper on CMOS-compatible graphene interconnects. Following this work, a team of University of California Santa Barbara (UCSB) engineering researchers recently came out with a method to utilize nanometer-scale doped multilayer graphene (DMG) interconnects well suited to the mass-production of integrated circuits.

For more than 20 years interconnects have been manufactured using copper as the base material, yet, the limitations of this metal when shrinking it to the nanoscale resistivity increase, which poses a “fundamental threat to the $500 billion semiconductor industry,” say researchers at UCSB. Graphene holds the potential to resolve this issue as a global desire for smarter, faster, lighter and affordable technology and devices continues to expand.

Graphene and other 2D materials form an enhanced heat protector for electronics

Researchers from Stanford, NIST, Theiss Research and several others have designed a new heat protector that consists of just a few layers of atomically thin materials, to protect electronics from excess heat.

Cross-section schematic of Gr/MoSe2/MoS2/WSe2 sandwich on SiO2/Si substrate imageCross-section schematic of Gr/MoSe2/MoS2/WSe2 sandwich on SiO2/Si substrate, with the incident Raman laser

The heat protector can reportedly provide the same insulation as a sheet of glass 100 times thicker. “We’re looking at the heat in electronic devices in an entirely new way,” said Eric Pop, professor of electrical engineering at Stanford and senior author of the study.

Skeleton Technologies' graphene-based supercapacitors to power Škoda trams in Mannheim

Skeleton Technologies, European developer of graphene-based supercapacitors and energy storage systems for transportation and grid applications, will supply supercapacitor systems to Škoda Electric, a traction equipment manufacturer, for 114 trams to be delivered by Škoda Transportation to Mannheim, Heidelberg, and Ludwigshafen in Germany.

The system recuperates the braking energy of the trams and uses it for re-acceleration, saving energy and decreasing costs. Supercapacitors are ideal for this application due to their high efficiency, reliability, and ability to recharge in seconds.

New graphene porous fibers may improve the sensitivity of wearable sensors

Chinese researchers from the Shanghai Institute of Microsystem and Information Technology, under the Chinese Academy of Sciences, have developed a new type of graphene porous fibers decorated with nanoballs and high gauge factors to improve the sensitivity of wearable sensors. The team produced a structural design to reduce the contact area between the graphene and polymer to enhance sensitivity.

The team explained that wearable textile strain sensors, perceiving and responding to human stimuli, are essential parts of wearable electronics. But subtle strains detection on human bodies is still limited to low sensitivity within current sensors.

Graphene takes a step towards enabling end-users to maintain their own resistance standards

Recent research by NPL, Oxford Instruments, Chalmers University and Graphensic has enabled the quantum Hall effect to be realized at both lower magnetic fields and higher temperatures, whilst still retaining part per billion accuracies.

The long-term collaboration between NPL, Chalmers University of Technology and Graphensic has resulted in a big advance in graphene samples. Epitaxial graphene (epigraphene) has been grown on silicon carbide and has better performance at higher temperatures and lower magnetic field than was previously possible. In practical terms, it has also removed the difficult process of fine-tuning the carrier density and means the ‘table-top’ system can be warmed up and cooled back down and the plateau stays where it is set with no user intervention.

Aecom uses graphene by Versarien to 3D print an arch that may modernize transport networks

Global infrastructure services firm Aecom is reportedly developing one of the UK’s first 3D-printed commercial products made from graphene-reinforced polymer.

The CNCTArch is being tested in Bristol imageThe CNCTArch is being tested in Bristol (Photo from Aecom)

Aecom has produced a graphene arch using additive manufacturing techniques. It believes the method could reduce the time and cost of installing digital signalling systems and transform the digitization of transport networks. The 4.5-meter high, lightweight arch is being tested on outdoor track at Network Rail’s workforce development center in Bristol.

Riptron to work with Tunghsu Optoelectronics to advance graphene sensors

Riptron, a spin-out company from the University of Manchester, has entered a partnership with China-based Tunghsu Optoelectronics to advance graphene sensors designed to measure the quality of air. The graphene-based sensors are expected to enter mass production shortly following the partnership between the two companies.

In this context, Riptron will secure around £1 million investment over two stages from Tunghsu Optoelectronics.

Israel and China to collaborate on new nanotechnology center to be established in Israel

Israel's Bar Ilan University (BIU) will establish a nanotechnology excellence center in collaboration with the Chinese Academy of Sciences (CAS). The new center at the BIU will include a laboratory to focus on nanomedicine research and two-dimensional (2D) materials engineering, mainly producing graphene.

According to BIU, the main task of the joint research lab is to integrate teamwork of Chinese and Israeli researchers with the participation of industrialists from both countries.