Nokia logoNokia, based in Finland is a large multinational corporation and was once the world's leading mobile phone maker. Nokia Research Center, with its 10 laboratories world-wide, is exploring new technologies mostly for mobility applications.

Nokia is involved with graphene research for several applications and the company takes part in the European €1 billion Graphene Flagship research project.

Company Address: 
Keilalahdentie 4
1 Espoo
Finland

The latest Nokia graphene news:

Nokia graphene updates from the 2016 MWC

The graphene keynote speech in the MWC 2016 included Nokia's Head of Business Line, Tapani Ryhanen's talk on graphene activity in Nokia.

It was a fascinating segment that shed light on the company's graphene-related activities, some of which (as can be seen in the image above) are energy storage applications, sensors, various electronic devices, photonics, optoelectronics and even graphene manufacturing - which shows that the company is really aiming at completing a full circle of graphene use.

Electricity can flow through graphene at high frequencies without energy loss

Researchers at Plymouth University, Cambridge and Tohoku (Japan) Universities and Nokia Technologies have found that electrical signals transmitted at high frequencies through graphene do not lose energy. In fact, the study showed that graphene out-performs any other known material, including superconductors, when carrying high-frequency electrical signals compared to direct current.



This finding may result in wide-ranging technology developments like next generation high-speed transistors, amplifiers, mobile phones, satellite communications and ultra-sensitive biological sensors.

Nokia patents a graphene oxide sensor for protection of mobile devices from water

Nokia recently issued a patent for a graphene oxide-based sensor for protection of mobile devices against water damages. The sensor will use a graphene oxide sensing film senses moisture content or change in relative humidity and triggers an ultra-fast disconnection of the mobile device from its power source (battery).

The sensor will include a sensor capable of sensing water in liquid or vapor form based on the measurement of large time derivative values. The sensor will comprise of a graphene oxide thin film and two or more electrodes in contact with the thin film. An electronic switch will be connected to the sensor and to a power source that powers the circuitry in the electronic device. The GO can be easily integrated into the sensor as a thin film by printing it on the power source's surface.The film should be less than 100 nanometers thick and could also be spray-coated or spin-coated onto the surface.

Nokia patents graphene-based flexible photon battery

Nokia has recently issued what could be a truly revolutional patent: a self-charging graphene-based photon battery, capable of being printed on flexible substrates.

The patent describes a battery that can regenerate itself immediately after discharge through continuous chemical reactions, without an external energy input. The result is an energy autonomous device. The battery uses humid air for the purpose of recharging and be made highly transparent.

Will Nokia prototype graphene-based optical sensors in the near future?

Nokia logoNokia, based in Finland and functions as a large multinational corporation, has recently published a job opening that raises the notion that it might move towards the prototyping phase of graphene-based sensors.

Nokia, which is known to be working on the R&D relating to optical sensors and has already patented a graphene-based photo detector in the past, published a job opening seeking "an expert in optoelectronics" that will be respnosible for developing graphene devices  to create the basis for a range of optical sensor products. The ad also stresses the need for capabilities pertaining to fabrication of devices that are capable of volume production.

Tags: