Researchers from Oak Ridge National Laboratory and Princeton University recently set out to automate the beam of an electron microscope in order to drill holes in graphene, but found that the drilled holes closed up. They expected the heat to make atoms easier to remove, but they saw the opposite effect.
"Graphene appeared impervious to the electron beam," said Ondrej Dyck, who co-led the study with Stephen Jesse at ORNL's Center for Nanophase Materials Sciences. Jesse added, "It heals locally, like the (fictitious) liquid-metal T-1000 in the movie Terminator 2: Judgment Day."
Theory-based computations performed on the lab's Summit supercomputer, led by ORNL's Mina Yoon, explained the quasi-metal's healing ability: Single atomic vacancies zip through the heated graphene until they meet up with other vacancies and become immobilized.
"Similar processes are likely to extend to other 2D materials," Dyck said.
"Controlling such processes could help us realize graphene's promise for quantum information science," said Jesse.
The researchers are attempting to apply this new knowledge to guide creation of atomic-scale devices.