Researchers examine novel inkjet-printed graphene for high‐quality large‐area electronics

Researchers from the University of Nottingham’s Centre for Additive Manufacturing (CfAM) have reported a breakthrough in the study of 3D printing electronic devices with graphene.

inkjet‐printed graphene/hBN FET imageCharacterization of the fully inkjet‐printed graphene/hBN FET. Photo from article

The scientists utilized an inkjet-based 3D printing technique to deposit inks that contained flakes of graphene, in a promising step towards replacing single-layer graphene as a contact material for 2D metal semiconductors.

Graphene/hBN SQUID detects even the faintest magnetic fields

Researchers at the University of Basel in Switzerland, Budapest University of Technology and Economics in Hungary and National Institute for Material Science in Japan have developed a new, super-small device that is capable of detecting minute magnetic fields.

Conventional vs. new SQUID imageA conventional SQUID (left) and the new SQUID (right). (University of Basel, Department of Physics)

The device, a new kind of superconducting quantum interference device (SQUID), is just 10 nanometres high, or around a thousandth of the thickness of a human hair. It's made from two layers of graphene – making it one of the smallest SQUIDs ever built – separated by a very thin layer of boron nitride.

A graphene and hBN 'sandwich' could create improved sensors and microscopes

Cornell researchers, led by Katja Nowack, assistant professor of physics, used an ultrathin graphene and hexagonal boron nitride 'sandwich' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.

Nowack's lab specializes in using scanning probes to conduct magnetic imaging. One of their go-to probes is the superconducting quantum interference device, or SQUID, which works well at low temperatures and in small magnetic fields.

Researchers create a mechanically-tunable graphene quantum dot

Researchers at Delft University of Technology (TU Delft) recently presented what they say is the first mechanically-tunable monolayer graphene QD whose electronic properties can be modified by in-plane nanometer displacements.

TU Delft team creates novel GQD image

The ability to precisely manipulate individual charge carriers can be considered as a cornerstone for single-electron transistors and for electronic devices of the future, including solid-state quantum bits (qubits). Quantum dots (QDs) are at the heart of these devices.

Graphene Flagship welcomes sixteen new FLAG-ERA projects

The Graphene Flagship has announced 16 New FLAG-ERA projects, that cover a broad range of topics, from fundamental to applied research. These projects which will become Partnering Projects of the Graphene Flagship – receiving around €11 million in funding overall.

Bringing together a diverse range of European knowledge and expertise, FLAG-ERA is an ERA-NET (European Research Area Network) initiative that aims to create synergies between new research projects and the Graphene Flagship and Human Brain Project.