Graphene Flagship team creates photosensitive graphene-based "switches"

Partners of the European Project 'Graphene Flagship' at the University of Strasbourg and CNRS (France), along with an international team of collaborators, created new 'switches' that respond to light. The team combined light-sensitive molecules with layers of graphene and other 2D materials to create new devices that could be used in sensors, optoelectronics and flexible devices.

Graphene Flagship team creates photosensitive graphene-based ''switches'' image

The researchers designed a molecule that can reversibly undergo chemical transformations when illuminated with ultraviolet and visible light. This molecule (a photoswitchable spiropyran) can be then attached to the surface of materials like graphene or molybdenum disulfide, thus generating an atomically precise hybrid macroscopic superlattice. When illuminated, the whole supramolecular structure experiences a collective structural rearrangement, which could be directly visualized with a sub-nanometer resolution by scanning tunneling microscopy.

Surwon Technology uses graphene in an attempt to double the life-cycle of Li-ion batteries

Surwon Technology, a Hong Kong based materials developer, has reported a new graphene-based technique with the potential of doubling the life-time performance of conventional lithium-ion batteries.

“The challenge for all energy dependent applications lies in creating a more robust, efficient battery fuel cell. We have found that graphene provides us with substantial flexibility as we continue to manipulate electrical behavior at the atomic level,” commented Surwon Technology’s Chief Technology Officer.

Chinese scientists develop flexible fast-charging aluminum-graphene battery

Researchers from Zhejiang University in China have developed a safe, flexible, fast-charging aluminum-graphene battery. The team's design relies on using graphene films as the anode and metallic aluminum as the cathode. It was reported that the battery could work well after quarter-million cycles and can be fully charged in seconds.

Experiments showed that the battery retains 91% of its original capacity after 250,000 recharges, surpassing all the previous batteries in terms of cycle life. In quick-charge mode, the battery can be fully charged in 1.1 seconds, according to the team. The assembled battery also works well in temperatures range of minus 40 to 120 degrees Celsius. It can be folded, and does not explode when exposed to fire.

A new graphene material called diamene switches from flexible to harder-than-diamond upon impact

Researchers from The City University of New York (CUNY) describe a process for creating diamene: flexible, layered sheets of graphene that temporarily become harder than diamond and impenetrable upon impact. The material is fascinating as it is as flexible and lightweight as foil but becomes stiff and hard enough to stop a bullet on impact. Such a material may be beneficial for applications like wear-resistant protective coatings and ultra-light bullet-proof films.

Graphene to be turned into diamene imagePhoto by Red Orbit

The team worked to theorize and test how two layers of graphene could be made to turn into a diamond-like material upon impact at room temperature. The team also found the moment of conversion resulted in a sudden reduction of electric current, suggesting diamene could have interesting electronic and spintronic properties.