Medicine

Researchers use graphene oxide to develop devices that could advance future cellular therapy for multiple sclerosis patients

A team from the National Hospital for Paraplegics (SESCAM), in collaboration with the Materials Science Institute of Madrid (ICMM-CSIC), has shown how new cell culture devices based on graphene oxide maintain the anti-inflammatory function of myeloid suppressor cells (MDSCs) once isolated from the donor's body. This function could be crucial for advancing cellular therapy beneficial to people with multiple sclerosis. 

"To exert their inflammation-controlling function in diseases such as multiple sclerosis, myeloid suppressor cells must maintain a very immature state. However, when extracted from the bone marrow and cultured in the laboratory, they begin to mature, losing their immunosuppressive activity, rendering them unsuitable for potential cellular therapy for patients with this type of neurodegenerative disease," explains Diego Clemente, a researcher at the National Hospital for Paraplegics and one of the lead authors of the study.

Read the full story Posted: Apr 10,2024

Graphene Trace secures £300k to tackle pressure ulcers

Graphene Trace, a UK-based startup that aims to use sensors to eradicate the problem of pressure ulcers, has been awarded a £300,000 grant by Innovate UK.

The startup believes its proprietary sensor technology for wheelchair users and hospital inpatients could reduce pressure ulcer onset by up to 95%. CEO Scott Dean said the grant will fund the creation of a prototype for its pressure ulcer prevention technology and bring it a step closer to going to market.

Read the full story Posted: Apr 05,2024

Researchers create graphene-integrated bioelectronic mesh for tracking multimodal excitation-contraction dynamics in cardiac microtissues

Researchers at the University of Massachusetts and Massachusetts Institute of Technology (MIT) have successfully built a tissue-like bioelectronic mesh system integrated with an array of graphene sensors that can simultaneously measure both the electrical signal and the physical movement of cells in lab-grown human cardiac tissue.

A bioelectronic mesh, studded with graphene sensors (red), can measure the electrical signal and movement of cardiac tissue (purple and green) at the same time. Image credit: UMass Amherst
 

The tissue-like mesh can grow along with the cardiac cells, allowing researchers to observe how the heart’s mechanical and electrical functions change during the developmental process. The new device can be extremely useful for those studying cardiac disease as well as those studying the potentially toxic side-effects of many common drug therapies.

Read the full story Posted: Mar 22,2024

Archer Materials miniaturizes biochip gFET chip design

Archer Materials has designed a miniaturized version of its Biochip graphene field effect transistor ("gFET") chip for fabrication at a commercial foundry.

The Archer Biochip contains a sensing region of which the gFET is the core component. Each gFET chip contains multiple gFETs, each of which is a transistor, which acts as a sensor. Archer has miniaturized the total chip size by redesigning the layout of the circuits creating these gFET transistors. The new miniaturized design has been sent to a foundry partner for a whole-wafer fabrication of reduced size gFET chips, which Archer intends to integrate with other parts of the Biochip technology.

Read the full story Posted: Mar 15,2024

New project will focus on graphene 'lab on a chip' medical diagnostic technology for rapid detection of infections

Researchers at the Liverpool School of Tropical Medicine (LSTM) will collaborate with ProMake, a material science and diagnostic company, as part of Innovate UK's Accelerated Knowledge Transfer Scheme. The new project will investigate how graphene technology could be utilized to rapidly detect infection and act as the basis for new medical diagnostics.

ProMake has developed a novel device prototype, the 'BioPod', a hand-held point-of-care diagnostic containing the graphene lab-on-a-chip (LOC) electrode. The LOC uses functionalized graphene, a super-strong and thin material laced with specific receptors, to detect a wide range of pathogens. The aim is to use the BioPod in the same way as lateral flow tests (LFTs), to test for COVID-19 and other pathogens. However, unlike LFTs, which provide quick results but with less accuracy than tests processed in the lab, the BioPod's advanced technology has the potential to be more accurate and easier to interpret.

Read the full story Posted: Mar 05,2024

First-in-human testing of graphene's safety shows encouraging results

Researchers at the University of Manchester, University of Edinburgh, ICN2, RIVM and the University of the Highlands and Islands have tested the safety and health implications of graphene, revealing that it has the potential to be used without risk to human health.

The study has shown that the use of graphene without harm to the human body is possible, through the carefully controlled inhalation of graphene, shown to have no short-term adverse effects on cardiovascular function.

Read the full story Posted: Feb 16,2024

Development of graphene-based sensor tattoos for sweat analysis gets funding boost

University of Massachusetts Amherst researchers have received an award to develop a graphene-based sweat monitor tattoos that can be applied to the skin just like a temporary tattoo and assess the molecules present, such as cortisol. The tattoos will aim to give users better insight into their health and serve as a tool for researchers to discover new early indications of diseases.

“There are a lot of vital biomolecules that are present in sweat that we need to measure to really understand overall human performance and correlation to different diseases,” says research lead and assistant professor of biomedical engineering, Dmitry Kireev.

Read the full story Posted: Jan 31,2024

Researchers develop self-assembling graphene sensors for modular wearable electronics

Researchers at Peking University, University of Science and Technology Beijing and Peking University Third Hospital have reported magnetically self-assembling graphene sensors. 

While wearable sensors can provide continuous, personalized health tracking beyond clinical visits, most devices today still have fixed designs targeting single applications, lacking versatility to address users' changing needs. The team's recent work could address this issue and enable modular, reconfigurable wearable electronics customized to individuals. 

Read the full story Posted: Jan 29,2024

Researchers use graphene electrodes to design neural implant capable of reading brain activity

University of California San Diego researchers have developed a neural implant capable of reading brain activity that could advance research into creating a brain-computer interface (BCI) without being overly invasive.

The new implant consists of a thin transparent strip made of a polymer with several graphene electrodes 20 micrometers in diameter, each of which is connected to a circuit board via tiny wires. The strip sits on the surface of the brain allowing it to detect neural activity consisting of electrical activity and calcium activity. Unlike previous methods, the chip allows scientists to conduct longer experiments without the need to have a subject fixed in place under a microscope.

Read the full story Posted: Jan 25,2024

Researchers design graphene biosensor that uses sound waves for chemical fingerprinting of ultrathin biolayers

Universidad Politécnica de Madrid researchers have reported the development of an electrically tunable graphene-based biosensor that leverages sound waves to provide unprecedented infrared sensitivity and specificity at the single layer limit. By precisely matching the tunable graphene plasmon frequency to target molecular vibrations, even faint spectral fingerprints emerge clearly.



This acoustically activated approach enables precise in situ study of angstrom-scale films, unlocking new infrared applications across chemistry, biology and medicine.

Read the full story Posted: Jan 23,2024