MINIGRAPH project aims to pave the way for a new generation of graphene-based adaptive neuroelectronic therapies

The MINIGRAPH project (Minimally Invasive Neuromodulation Implant and implantation procedure based on ground-breaking GRAPHene technology for treating brain disorders) aims to pave the way for a new generation of adaptive neuroelectronic therapies, resolving the most important limitations of current technology. The project revolves around the development of a new generation of graphene-based brain implants.

The project started in October 2022 and will go on for 36 months. It is a HORIZON-EIC project, with an estimated cost of €3,928,402.50. Among its members are ICN2, IMEC, Fraunhofer, INBRAIN Neuroelectronics, MSRL and more. Recently, Scientists from the Czech Advanced Technologies and Research Institute – CATRIN at Palacký University also announced that they will participate in the project.

Read the full story Posted: Aug 16,2023

Researchers design rGO-based nerve gas sensor using human scent receptors

Researchers from Seoul National University and Samsung Electronics have developed a sensitive and selective nerve gas sensor using human scent receptors. It reliably detected a substitute for deadly sarin gas in simulated tests.

Nerve gases are often very potent, requiring highly sensitive sensors to detect them quickly and accurately. One method of boosting sensitivity combines human scent receptors with nanomaterials such as reduced graphene oxide to create a "bioelectronic nose." But since these nerve gases are still highly dangerous even in laboratory settings, many scientists rely on safer, substitute molecules instead. In the case of the sarin or soman nerve agents, dimethyl methylphosphonate (DMMP) is a common replacement. Previously, the receptor protein hOR2T7 has been used to detect DMMP, but it could only do so when the nerve agent substitute was in a liquid form, rather than as a gas. So, the research team wanted to design a "nose" of their own that was both highly sensitive and selective for the gaseous form, using nanodiscs containing the hOR2T7 receptor.

Read the full story Posted: Aug 12,2023

Researchers achieve multiomics biosignal detection in real-time via an electronic biosensor

Scientists at DARPA, Siemens, US ARMY, Georgia Tech Research Institute, and Paragraf - through recently acquired Cardea Bio, now Paragraf San Diego - presented novel multiomics capabilities, by detection of both protein and RNA biosignals simultaneously on a single graphene-based biosensor.

Dr. Kiana Aran, Chief Innovation Officer at Paragraf San Diego, stated: “Having a single technology platform that can detect both protein and DNA/RNA biosignal analytes at the same time on a small-scale detection device, is a major technological advancement. While it initially will impact when and where we can detect viral infections, with time it will also work for other types of diseases. This will enable new, better, and way faster diagnoses for any types of diseases or biothreats.”

Read the full story Posted: Aug 06,2023

Researchers use graphene transistors to design novel biomimetic sensing system

Researchers from Shanghai Jiao Tong University, Chinese Academy of Fishery Sciences,  BOKU-University of Natural Resources and Life Sciences, University of Oslo and Oslo University Hospital, MIT, 2bind and Avalon GloboCare have designed a novel sensor that could detect the same molecules that naturally occurring cell receptors can identify.

The researchers created a prototype sensor that can detect an immune molecule called CXCL12, down to tens or hundreds of parts per billion. This is an important first step towards developing a system that could be used to perform routine screens for hard-to-diagnose cancers or metastatic tumors, or as a highly biomimetic electronic “nose,” the researchers say.

Read the full story Posted: Jul 28,2023

Researchers develop an aptasensor based on a novel graphene derivative equipped with alkyne groups

Researchers find a way to make the detection of antibiotic residues in water more quick and simple. The research team included scientists from the Czech Advanced Technology and Research Institute (CATRIN) at Palacký University and the Technical University of Ostrava. The new biosensor looks like a small box connected to a mobile phone. This device can immediately detect even very small antibiotic residues, namely ampicillin, in water or dairy products.

It is based on a tailor-made nanomaterial derived from fluorographene, developed by scientists from the Graphene Flagship Associated Member Czech Advanced Technology and Research Institute (CATRIN) of Palacký University and its Faculty of Science (Czech Republic). They used the so-called click chemistry method, which was awarded the Nobel Prize in Chemistry last year.

Read the full story Posted: Jul 11,2023

Researchers develop "e-skin" from graphene and seaweed microcapsules

Researchers at Queen Mary University, University of Sussex and University of Brighton have integrated graphene into seaweed to create nanocomposite microcapsules for highly tunable and sustainable epidermal electronics. When assembled into networks, the tiny capsules can record muscular, breathing, pulse, and blood pressure measurements in real-time with ultrahigh precision.

The team explained that much of the current research on nanocomposite-based sensors is related to non-sustainable materials. This means that these devices contribute to plastic waste when they are no longer in use. The new study shows that it is possible to combine molecular gastronomy concepts with biodegradable materials to create such devices that are not only environmentally friendly, but also have the potential to outperform the non-sustainable ones.

Read the full story Posted: Jun 30,2023

Researchers design wearable skin sensor that can wirelessly detect the presence of CRP in sweat

Researchers from California Institute of Technology (Caltech), The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, University of California Los Angeles and Cedars-Sinai Medical Center have designed a wearable and wireless patch for the real-time electrochemical detection of the inflammatory biomarker C-reactive (CRP) protein in sweat. CRP is secreted by the liver and is commonly associated with inflammation. Its presence in the bloodstream strongly indicates an underlying health condition. CRP is much more difficult to detect because it is at a much lower concentration than other biomarkers.

The device integrates iontophoretic sweat extraction, microfluidic channels for sweat sampling and for reagent routing and replacement, and a graphene-based sensor array for quantifying CRP (via an electrode functionalized with anti-CRP capture antibodies-conjugated gold nanoparticles), ionic strength, pH and temperature for the real-time calibration of the CRP sensor.

Read the full story Posted: Jun 27,2023

Researchers demonstrate multiomics biosignal detection in real-time via graphene-based biosensor

DARPA, Siemens, the U.S ARMY, Georgia Tech Research Institute and Paragraf - through recently acquired Cardea Bio, now Paragraf San Diego - have presented novel multiomics capabilities, by detection of both protein and RNA biosignals simultaneously on a single graphene-based biosensor.

It was stated that this achievement marks the first public demonstration of this novel methodology for multiomics and that the paper is the first in the world demonstrating the capability to detect both protein and RNA biosignals in a COVID-19 based experiment where both the COVID wild type as well as the Omicron variant were successfully detected.

Read the full story Posted: Jun 15,2023

Hememics Biotechnologies and General Graphene Corporation form strategic partnership for graphene biosensors

Earlier this month, Hememics Biotechnologies, developer of a rapid handheld bio testing platform based on unique graphene-based sensors, raised a $2 million seed round to help build its “lab in a hand” tech. Now, Hememics Biotechnologies also entered into a strategic partnership with General Graphene Corporation, the culmination of a four-year collaborative effort to develop a scalable, non-clean-room process for the manufacturing of the company’s 32-plex, graphene biosensor chips. 

Combined with Hememics’ expertise in long-shelf-life detection biology, this partnership aims to revolutionize point-of-care diagnostics tools for pathogens and environmental toxins.

Read the full story Posted: Jun 09,2023

GrapheneDx, General Graphene Corp and Sapphiros announce strategic partnership to industrialize graphene-based biosensors

GrapheneDX, General Graphene Corporation and Sapphiros have announce a strategic partnership to industrialize graphene-based biosensors for medical devices used to diagnose a variety of diseases at the point-of-care and in consumer settings.

GrapheneDx is an in vitro diagnostics company focused on improving diagnostic capability at the point-of-care and in consumer settings. The company is an expert in functionalizing graphene to create graphene field effect transistors (GFETs), which are biosensors that can be used to detect disease in biological samples. GrapheneDx's medical devices are designed to provide lab-quality accuracy, deliver results in less than 5 minutes and be simple enough to be performed both at the point of care and by patients without the supervision of a medical professional. The company's GFET platform is versatile, demonstrating performance across a variety of disease states (sexually transmitted infections, respiratory disease, cardiac disease, concussion and others) and sample types (stool, urine, swabs, blood, etc.), with little or no sample preparation. Additionally, the platform is capable of multiplexing numerous analytes concurrently with a single patient sample. GrapheneDx's first tests will be for the diagnosis of sexually transmitted infections, including Chlamydia and Gonorrhea, using a noninvasive, easy to collect urine sample.

Read the full story Posted: Jun 06,2023