Hememics Biotechnologies and General Graphene Corporation form strategic partnership for graphene biosensors

Earlier this month, Hememics Biotechnologies, developer of a rapid handheld bio testing platform based on unique graphene-based sensors, raised a $2 million seed round to help build its “lab in a hand” tech. Now, Hememics Biotechnologies also entered into a strategic partnership with General Graphene Corporation, the culmination of a four-year collaborative effort to develop a scalable, non-clean-room process for the manufacturing of the company’s 32-plex, graphene biosensor chips. 

Combined with Hememics’ expertise in long-shelf-life detection biology, this partnership aims to revolutionize point-of-care diagnostics tools for pathogens and environmental toxins.

Read the full story Posted: Jun 09,2023

GrapheneDx, General Graphene Corp and Sapphiros announce strategic partnership to industrialize graphene-based biosensors

GrapheneDX, General Graphene Corporation and Sapphiros have announce a strategic partnership to industrialize graphene-based biosensors for medical devices used to diagnose a variety of diseases at the point-of-care and in consumer settings.

GrapheneDx is an in vitro diagnostics company focused on improving diagnostic capability at the point-of-care and in consumer settings. The company is an expert in functionalizing graphene to create graphene field effect transistors (GFETs), which are biosensors that can be used to detect disease in biological samples. GrapheneDx's medical devices are designed to provide lab-quality accuracy, deliver results in less than 5 minutes and be simple enough to be performed both at the point of care and by patients without the supervision of a medical professional. The company's GFET platform is versatile, demonstrating performance across a variety of disease states (sexually transmitted infections, respiratory disease, cardiac disease, concussion and others) and sample types (stool, urine, swabs, blood, etc.), with little or no sample preparation. Additionally, the platform is capable of multiplexing numerous analytes concurrently with a single patient sample. GrapheneDx's first tests will be for the diagnosis of sexually transmitted infections, including Chlamydia and Gonorrhea, using a noninvasive, easy to collect urine sample.

Read the full story Posted: Jun 06,2023

Researchers develop graphene-based wearable textile that can capture energy from body movement to power devices

Researchers from Sichuan University, Chinese Academy of Sciences and Georgia Institute of Technology have developed a graphene-based wearable textile that can convert body movement into useable electricity and even store that energy. The fabric can potentially be used in a wide range of applications, from medical monitoring to assisting athletes and their coaches in tracking their performance, as well as smart displays on clothing.

The accuracy of current wearable electronic devices and various available health monitors remains limited due to the handful of locations on or near the body on which they can be placed, and restricted to a small selection of applications. In the future, if advanced fabrics can be developed, wearable electronic devices integrated into shirts, pants, underwear and hats will be able to track indicators of frailty to assess risk of age-related disease, monitor cortisol levels to track stress levels, or even detect pathogens as part of a global pandemic monitoring network. To take wearable electronics to this next level, monitors will have to be integrated into textiles in a way that is lightweight, unobtrusive and less cumbersome.

Read the full story Posted: Jun 06,2023

Researchers develop GO-based injectable bioelectrodes with tunable degradability

Researchers from Gwangju Institute of Science and Technology (GIST) and Chonnam National University Medical School have developed graphene-based conductive hydrogel electrodes that offer convenience of use, controllable degradation, and excellent signal transmission. 

Implantable bioelectrodes are electronic devices that can monitor or stimulate biological activity by transmitting signals to and from living biological systems. Such devices can be fabricated using various materials and techniques. But, because of their intimate contact and interactions with living tissues, selection of the right material for performance and biocompatibility is crucial. Conductible hydrogels are attracting great attention as bioelectrode materials owing to their flexibility, compatibility, and excellent interaction ability. However, the absence of injectability and degradability in conventional conductive hydrogels limits their convenience of use and performance in biological systems. The researchers' new graphene-based conductive hydrogels possess injectability and tunable degradability, furthering the design and development of advanced bioelectrodes. 

Read the full story Posted: May 13,2023

Haydale awarded SMART funding to bring graphene products to market

Haydale has announced that it has been awarded SMART Flexible Innovation Support ("SMART FIS") from The Welsh Government to accelerate the development of its graphene underfloor heating product and range of biomedical sensor inks.

As part of a new innovation strategy for Wales, aimed at supporting Welsh industry by increased investment in research, development, and innovation, SMART FIS will provide Haydale with funding totaling £182,843 over a two-year period. Part of this funding will enable Haydale to accelerate the development of its prototype graphene underfloor heating ("UFH") towards a market-ready CE product that can be tested in a home environment. It will support continued engagement with partners such as City Energy Network Ltd and Plumbase.

Read the full story Posted: May 03,2023

Researchers develop graphene-enhanced foam with medical and environmental applications

Researchers at the University of Georgia have developed a new graphene-enhanced foam material that could significantly reduce health care-related infections caused by implanted medical devices, as well as drastically improve cleanup efforts following environmental disasters, such as oil spills.

The 3D foam is water repellent and exhibits antimicrobial and oil-water separation properties. Its versatility and relatively inexpensive production costs could make it a valuable resource for clinicians and those specializing in environmental remediation.

Read the full story Posted: Apr 29,2023

Researchers design breakthrough graphene-based cardiac implant

A team of researchers, led by Northwestern University and the University of Texas at Austin (UT), has developed a graphene-based cardiac implant. Similar in appearance to a temporary tattoo, the new graphene “tattoo” implant is thinner than a single strand of hair yet still functions like a classical pacemaker. But unlike current pacemakers and implanted defibrillators, which require hard, rigid materials that are mechanically incompatible with the body, the new device softly melds to the heart to simultaneously sense and treat irregular heartbeats. The implant is thin and flexible enough to conform to the heart’s delicate contours as well as stretchy and strong enough to withstand the dynamic motions of a beating heart.

After implanting the device into a rat model, the researchers demonstrated that the graphene tattoo could successfully sense irregular heart rhythms and then deliver electrical stimulation through a series of pulses without constraining or altering the heart’s natural motions. The technology also is optically transparent, allowing the researchers to use an external source of optical light to record and stimulate the heart through the device.

Read the full story Posted: Apr 18,2023

Researchers develop graphene-based noninvasive sensors for brain–machine interfaces

Researchers from the University of Technology Sydney (UTS) have developed graphene-enhanced biosensor technology that enables the operation of devices, such as robots and machines, solely through thought control.

 The technology has significant potential in fields such as defense applications, advanced manufacturing, aerospace and healthcare. The advanced brain-computer interface was developed by Distinguished Professor Chin-Teng Lin and Professor Francesca Iacopi, from the UTS Faculty of Engineering and IT, in collaboration with the Australian Army and Defense Innovation Hub.

Read the full story Posted: Mar 22,2023

Researchers develop a graphene-based intelligent, wearable artificial throat that is sensitive to human speech and vocalization-related motions

A team of researchers at China's Tsinghua University and Shanghai Jiao Tong University have developed a graphene-based intelligent, wearable artificial throat (AT) that is sensitive to human speech and vocalization-related motions. It is a wafer-like tool one centimeter square that can allow barely audible sounds, or even whispers, to be converted into speech at normal volume.

The device is about the width of plastic cling wrap. The 25-micrometer deep device may be applied to one's throat with a simple adhesive. Tiny wires connect to a microcontroller powered by a coin-sized battery.

Read the full story Posted: Mar 15,2023

Researchers' examination of surface oxygen in graphene materials may yield graphene-based products with better antibacterial activity

The amount of surface oxygen in graphene materials is a key factor in how effective they could be in killing bacteria – a discovery which may help to design safer and more effective products to combat antimicrobial resistance.

Researchers from the UK's University of Birmingham, China's Shandong University of Technology, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China, NovaMechanics in Cyprus, Austria's Medical University of Innsbruck, University of Eastern Finland and Leiden University in the Netherlands have found that it is graphene oxide’s different interaction modes that lead to distinct antibacterial activity – with a ‘switch’ occurring when surface oxygen levels reach a certain threshold.

Read the full story Posted: Mar 09,2023