Graphene-Info's Batteries, Supercapacitors, GO, Lighting, Displays and Graphene Investments Market Reports updated to July 2017

Jul 05, 2017

Today we published a new version of all our graphene market reports. Graphene-Info provides comprehensive niche graphene market reports, and our reports cover everything you need to know about these niche markets. The reports are now updated to July 2017.

Graphene batteries market report 3D cover

The Graphene Batteries Market Report:

  • The advantages using graphene batteries
  • The different ways graphene can be used in batteries
  • Various types of graphene materials
  • What's on the market today
  • Detailed specifications of some graphene-enhanced anode material
  • Personal contact details into most graphene developers

The report package provides a good introduction to the graphene battery - present and future. It includes a list of all graphene companies involved with batteries and gives detailed specifications of some graphene-enhanced anode materials and contact details into most graphene developers. Read more here!

Researchers succeed in imaging how electrons move in graphene

Apr 27, 2017

Researchers at the University of Melbourne succeeded in imaging how electrons move in 2D graphene, an achievement which may boost the development of next-generation electronics. The new technique overcomes usual limitations of existing methods for understanding electric currents in devices based on ultra-thin materials, and so it is capable of imaging the behavior of moving electrons in structures only one atom in thickness.

Mapping electrons in graphene using diamonds image

The team used a special quantum probe based on an atomic-sized 'color center' found only in diamonds to image the flow of electric currents in graphene. The technique could be used to understand electron behavior in a variety of new technologies.

Graphene-based transistors show promise for optical technologies

Apr 18, 2017

Researchers at Purdue University, the University of Michigan and Pennsylvania State University have combined graphene with a (comparatively much larger) silicon carbide substrate, creating graphene field-effect transistors which can be activated by light. This may lead to the development of highly sensitive graphene-based optical devices, an advance that could bring applications from imaging and displays to sensors and high-speed communications.

GFETs show promise for optical technologies image

A typical problem of graphene-based photodetectors is that they have only a small area that is sensitive to light, limiting their performance. “In typical graphene-based photodetectors demonstrated so far, the photoresponse only comes from specific locations near graphene over an area much smaller than the device size,” the team said. “However, for many optoelectronic device applications, it is desirable to obtain photoresponse and positional sensitivity over a much larger area”. The researchers tackled exactly this in their new work.

Graphene-Info's Batteries, Supercapacitors, GO, Lighting, Displays and Graphene Investments Market Reports updated to March 2017

Mar 06, 2017

Today we published a new version of all our graphene market reports. Graphene-Info provides comprehensive niche graphene market reports, and our reports cover everything you need to know about these niche markets. The reports are now updated to March 2017.

Graphene batteries market report 3D cover

The Graphene Batteries Market Report:

  • The advantages using graphene batteries
  • The different ways graphene can be used in batteries
  • Various types of graphene materials
  • What's on the market today
  • Detailed specifications of some graphene-enhanced anode material
  • Personal contact details into most graphene developers

The report package provides a good introduction to the graphene battery - present and future. It includes a list of all graphene companies involved with batteries and gives detailed specifications of some graphene-enhanced anode materials and contact details into most graphene developers. Read more here!

A novel doping method could open the door to FLG use as transparent conducting electrodes

Feb 15, 2017

Researchers from King Abdullah University of Science and Technology (KAUST), in collaboration with the Georgia Institute of Technology, have recently demonstrated a simple, solution-based, method for surface doping of few-layer graphene (FLG) using novel dopants (metal-organic molecules) that show a minimal effect on the optical transmission as compared to other dopants like metal chlorides.

This work investigates the effect of dopant strength and dosage on the electronic and electrical transport properties of doped FLG. Moreover, It reveals fundamental differences between the doping results in single layer graphene and few-layer graphene. The study focused on few-layer CVD graphene, rather than single-layer CVD graphene, a somewhat less common area of research to date.