Researchers design method that makes graphene nanoribbons easier to produce

Russian researchers have proposed a new method for synthesizing high-quality graphene nanoribbons. The team's approach to chemical vapor deposition offers a higher yield at a lower cost, compared with the currently used nanoribbon self-assembly on noble metal substrates.

Two nanoribbon edge configurations imageTwo nanoribbon edge configurations. The pink network of carbon atoms is a ribbon with zigzag (Z) edges, and the yellow one has so-called armchair (A) edges. Image credit MIPT

Unlike silicon, graphene does not have the ability to switch between a conductive and a nonconductive state. This defining characteristic of semiconductors is crucial for creating transistors, which are the basis for all of electronics. However, once you cut graphene into narrow ribbons, they gain semiconducting properties, provided that the edges have the right geometry and there are no structural defects. Such nanoribbons have already been used in experimental transistors with reasonably good characteristics, and the material’s elasticity means the devices can be made flexible. While it is technologically challenging to integrate 2D materials with 3D electronics, there are no fundamental reasons why nanoribbons could not replace silicon.

A new project called GraphCAT will aim to create an ecosystem of graphene research

A new project was recently launched under the name of GraphCAT, an initiative to create an ecosystem of research centers focused in the study of graphene. The project received funding from the Government of Catalonia and the European Union.

The ultimate vision of the GraphCAT Community is to establish Catalonia as an international hub for graphene research, development and innovation, with multiple local industries deriving strong competitive advantage in the global marketplace through the integration of proprietary graphene technologies into their products and services.

Researchers examine novel inkjet-printed graphene for high‐quality large‐area electronics

Researchers from the University of Nottingham’s Centre for Additive Manufacturing (CfAM) have reported a breakthrough in the study of 3D printing electronic devices with graphene.

inkjet‐printed graphene/hBN FET imageCharacterization of the fully inkjet‐printed graphene/hBN FET. Photo from article

The scientists utilized an inkjet-based 3D printing technique to deposit inks that contained flakes of graphene, in a promising step towards replacing single-layer graphene as a contact material for 2D metal semiconductors.

Graphene nano-ribbons could help build future integrated circuits

University of California researchers, along with teams from other U.S-based institutions like Columbia University, Lawrence Berkeley National Laboratory and University of Washington, have created a metallic wire made entirely of carbon, setting the stage for a ramp-up in research to build carbon-based transistors and, ultimately, computers.

"Staying within the same material, within the realm of carbon-based materials, is what brings this technology together now," said Felix Fischer, UC Berkeley professor of chemistry, noting that the ability to make all circuit elements from the same material makes fabrication easier. "That has been one of the key things that has been missing in the big picture of an all-carbon-based integrated circuit architecture."

Graphene-based platform enables real-time monitoring of the molecular self-assembly process at the solid/liquid interface

Researchers from the University of Strasbourg & CNRS (France), in collaboration with Humboldt University of Berlin and DWI – Leibniz Institute for Interactive Materials/RWTH Aachen University in Germany, have shown that graphene devices can be used to monitor in real time the dynamics of molecular self-assembly at the solid/liquid interface.

Molecular self-assembly on surfaces is an attractive strategy to provide substrates with specific properties. Understanding the dynamics of the self-assembly process is vital in order to master surface functionalization. However, real-time monitoring of molecular self-assembly on a given substrate has proven complicated by the challenge to disentangle interfacial and bulk phenomena.