Graphene nano-ribbons could help build future integrated circuits

University of California researchers, along with teams from other U.S-based institutions like Columbia University, Lawrence Berkeley National Laboratory and University of Washington, have created a metallic wire made entirely of carbon, setting the stage for a ramp-up in research to build carbon-based transistors and, ultimately, computers.

"Staying within the same material, within the realm of carbon-based materials, is what brings this technology together now," said Felix Fischer, UC Berkeley professor of chemistry, noting that the ability to make all circuit elements from the same material makes fabrication easier. "That has been one of the key things that has been missing in the big picture of an all-carbon-based integrated circuit architecture."

Graphene-based platform enables real-time monitoring of the molecular self-assembly process at the solid/liquid interface

Researchers from the University of Strasbourg & CNRS (France), in collaboration with Humboldt University of Berlin and DWI – Leibniz Institute for Interactive Materials/RWTH Aachen University in Germany, have shown that graphene devices can be used to monitor in real time the dynamics of molecular self-assembly at the solid/liquid interface.

Molecular self-assembly on surfaces is an attractive strategy to provide substrates with specific properties. Understanding the dynamics of the self-assembly process is vital in order to master surface functionalization. However, real-time monitoring of molecular self-assembly on a given substrate has proven complicated by the challenge to disentangle interfacial and bulk phenomena.

Cardea Bio raises $7.5 million in series A2 financing

Following a $7.8 Million Series A-1 financing announced in March 2019, Cardea, (formerly called Nanomedical Diagnostics), a U.S-based manufacturer of a biology-enabled transistor technology made from graphene-based biosensors, now announced another $7.5 Million raised in the Series A2 Financing.

The capital will help accelerate the growth and development of the Company’s proprietary Tech+Bio Infrastructure and chipsets that enable Cardea’s Innovation Partners to bring “Powered by Cardea" products to market with features and competitive advantages Cardea defines as "never seen before".

Graphenea upgrades its foundry service

Graphenea recently announced that its graphene foundry service (GFAB), launched in 2019, will be getting an upgrade. Graphenea Foundry said that it will start a Multi-Project Wafer run service from January 2021, and it is currently speaking with customers interested in this first run.

Graphenea announces an upgrade to foundry service image

Graphenea Foundry follows a pure-play foundry model, in which it manufactures graphene-based devices for its customers and third parties under request. Nevertheless, the factory also makes usable plug&play graphene devices from scratch, thus covering all aspects of device manufacturing. The staple product and the starting point for satisfying most customer needs is the GFET, the graphene field effect transistor. These readily-available devices are said to be ideal for early experiments and proof-of-concept measurements.

International team reports advances towards tunable graphene plasmonic THz amplifiers

An international team of researchers, led by Tohoku University's professor Taiichi Otsuji, successfully demonstrated a room-temperature coherent amplification of terahertz (THz) radiation in graphene, electrically driven by a dry cell battery.

About 40 years ago, the arrival of plasma wave electronics fascinated scientists with the possibility that plasma waves could propagate faster than electrons, suggesting that so-called "plasmonic" devices could work at THz frequencies. However, experimental attempts to realize such amplifiers or emitters remained elusive.