MIT team finds ‘twisted’ graphene getting weirder at ‘magical angle’

Researchers at the Massachusetts Institute of Technology (MIT) have previously found a particularly strange pattern in the “twisted” graphene structure, and now they’ve studied it more closely and found that the more layers it has, the better it will work.

Graphene is a 2D carbon nanomaterial consisting of a hexagonal hexagonal grid of a hexagonal structure of carbon atoms with a sp2 hybrid orbit. This makes them functionally two-dimensional, because the electrons that move through them can only move forward/backward and sideways, not above and below. This makes graphene very conductive.

Researchers explore graphene's superconductive state

Researchers at Aalto University and the University of Jyväskylä showed that graphene can be a superconductor at a much higher temperature than expected, due to a subtle quantum mechanics effect of graphene's electrons.

The discovery of the superconducting state in twisted bilayer graphene spurred an intense debate among physicists regarding the origin of superconductivity in graphene. Although superconductivity was found only at a few degrees above the absolute zero of temperature, uncovering its origin could help understanding high-temperature superconductors and allow us to produce superconductors that operate near room temperature. Such a discovery has been considered one of the "holy grails" of physics, as it would allow operating computers with radically smaller energy consumption than today.

German researchers examine how proximity affects the resistance of graphene

A research team from the University of Göttingen, together with the Chemnitz University of Technology and the Physikalisch-Technische Bundesanstalt Braunschweig, has investigated the influence of the crystal on which graphene is grown, on the electrical resistance of the resulting material.

Contrary to previous assumptions, the new results show that the process known as the ‘proximity effect’ varies considerably at a nanometre scale. To determine the electrical resistance of graphene at the smallest scale possible, the physicists used a scanning tunneling microscope (STM).

Graphene enables researchers to visualize the flow of electrons

Researchers from Israel's Weizmann Institute and the UK's Manchester University have succeeded in imaging electrons' hydrodynamic flow pattern for the first time using a novel scanning probe technique. They have proven the longstanding scientific theory that electrons can behave like a viscous liquid as they travel through a conducting material, producing a spatial pattern that resembles water flowing through a pipe.

The results of this study could help developers of future electronic devices, especially those based on 2D materials like graphene in which electron hydrodynamics is important.

Superconductivity in bilayer graphene can be turned on or off with a voltage change

An international team of researchers from Spain, the U.S., China and Japan has found that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices. This follows previous findings regarding twisted bilayer graphene and its ability to exhibit alternating superconducting and insulating regions.

"It's kind of a holy grail of physics to create a material that has superconductivity at room temperature," University of Texas at Austin physicist Allan MacDonald said. "So that's part of the motivation of this work: to understand high-temperature superconductivity better."

Want to be part of a graphene company? planarTECH is crowdfunding! Want to be part of a graphene company? planarTECH is crowdfunding!