Researchers at Queen's University develop a novel, scalable and low-cost process to produce defect-free graphene nanoplatelets

Researchers at Queen’s University in Kingston, Canada have developed a simple yet effective exfoliation process for producing few-layer graphene nanoplatelets (FL-GNPs). Utilizing this one-step, chemical and solvent-free process the researchers were able to convert graphite flakes (+100 mesh, purity >97%) into FL-GNPs at a high yield (90%) and to subsequently form thermoplastic/FL-GNPs composites with improved electrical and mechanical properties.

Queens University FL-Graphene TEM photo TEM image of isolated FL-GNP

The exfoliated graphene nanoplatelets had a high specific surface area (325 m2/g), an aspect ratio above 500 (approximate lateral dimensions of 2µm and thickness of 3.5 nm), and a Raman D/G ratio of 0.3; indicating a structure with few defects. The flexural modulus of polyamide/FL-GNP composites containing 15 volume % FL-GNPs improved from 1850 MPa to 5,080 MPa while the electrical conductivity rose from 5x10-14 S/m to 21 S/m. Surface-coating the FL-GNPs through the addition of a coating agent during the last stages of the exfoliation process rendered the FL-GNPs more hydrophilic, thus, forming stable dispersions in water.

Urbix Resources to build a purification plant in Vietnam

Urbix Resources logo imageAiming to ramp up their international operations, Urbix Resources will reportedly work with Hanoi-based Vietnam Graphite Group to build a 70,000 tonne purification plant in Vietnam. The Vietnamese purification plant will be situated within VGG’s graphite mining operations in North Western Vietnam and will serve customers in Japan and the surrounding region.

The facility is scheduled for stage one completion in late 2020. It is anticipated the purification plant will have the capability of achieving revenues exceeding US $200 million annually once the second stage is completed the following year. It appears that the plant will be used to produce, among other materials, graphene oxide and graphene nanoplatelets.

Versarien updates on AECOM collaboration

Versarien, the advanced materials engineering group, has announced that it has signed a supply agreement to provide Versarien's new graphene enhanced polymer range to AECOM for a current infrastructure project.

This supply agreement follows the collaboration Versarien entered into with AECOM, a US headquartered and Fortune 500 company. This collaboration covered a project that AECOM and Versarien have been undertaking involving the incorporation of Versarien's graphene nano-platelets into large scale polymer structures used in civil infrastructure projects, with a view to increasing their structural strength.

Versarien receives graphene order for fire retardant aircraft interior parts

Versarien LogoVersarien has announced that it has received an order for the supply of Versarien's graphene nano platelets to a design and manufacturing company for use in fire retardant aircraft interior parts for a major global airline.

The order is for an initial 1 kg of the Company's graphene nano platelets and it is anticipated that further orders will be received to fulfill the end-customers' contract. The specific aircraft interior parts have reportedly gained the necessary certification from a USA-based, Federal Aviation Administration (FAA) certified, fire testing laboratory.

Bionic mushroom interacts with bacteria and graphene to generate electricity

In a recent study, researchers from the Stevens Institute of Technology in the U.S have come up with an original idea - they designed a bionic mushroom that uses graphene to produce electricity. More accurately, the researchers have generated mushrooms patterned with energy-producing bacteria and an electrode network.

Bionic mushroom generates electricity image

Many examples of organisms that live closely together and interact with each other exist in nature. In some cases, this symbiotic relationship is mutually beneficial. The research team wanted to engineer an artificial symbiosis between button mushrooms and cyanobacteria. In their vision, the mushroom would provide shelter, moisture and nutrients, while bacteria 3D-printed on the mushroom's cap would supply energy by photosynthesis. Graphene nanoribbons printed alongside the bacteria could capture electrons released by the microbes during photosynthesis, producing bio-electricity.

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!