New method to produce graphene nanoribbons could promote use in telecommunications applications

University of Wisconsin–Madison researchers have fabricated graphene into the smallest ribbon structures to date, using a method that is said to make scaling-up simple. In tests with these tiny ribbons, the scientists discovered they were closing in on the properties they needed to move graphene toward usefulness in telecommunications equipment.

Flexible, easy-to-scale nanoribbons move graphene toward use in tech applications imageImage credit: University of Wisconsin−Madison

“Previous research suggested that to be viable for telecommunication technologies, graphene would need to be structured prohibitively small over large areas, (which is) a fabrication nightmare,” says Joel Siegel, a UW–Madison graduate student in physics professor Victor Brar’s group and co-lead author of the study. “In our study, we created a scalable fabrication technique to make the smallest graphene ribbon structures yet and found that with modest further reductions in ribbon width, we can start getting to telecommunications range.”

Researchers design method that makes graphene nanoribbons easier to produce

Russian researchers have proposed a new method for synthesizing high-quality graphene nanoribbons. The team's approach to chemical vapor deposition offers a higher yield at a lower cost, compared with the currently used nanoribbon self-assembly on noble metal substrates.

Two nanoribbon edge configurations imageTwo nanoribbon edge configurations. The pink network of carbon atoms is a ribbon with zigzag (Z) edges, and the yellow one has so-called armchair (A) edges. Image credit MIPT

Unlike silicon, graphene does not have the ability to switch between a conductive and a nonconductive state. This defining characteristic of semiconductors is crucial for creating transistors, which are the basis for all of electronics. However, once you cut graphene into narrow ribbons, they gain semiconducting properties, provided that the edges have the right geometry and there are no structural defects. Such nanoribbons have already been used in experimental transistors with reasonably good characteristics, and the material’s elasticity means the devices can be made flexible. While it is technologically challenging to integrate 2D materials with 3D electronics, there are no fundamental reasons why nanoribbons could not replace silicon.

Graphene nano-ribbons could help build future integrated circuits

University of California researchers, along with teams from other U.S-based institutions like Columbia University, Lawrence Berkeley National Laboratory and University of Washington, have created a metallic wire made entirely of carbon, setting the stage for a ramp-up in research to build carbon-based transistors and, ultimately, computers.

"Staying within the same material, within the realm of carbon-based materials, is what brings this technology together now," said Felix Fischer, UC Berkeley professor of chemistry, noting that the ability to make all circuit elements from the same material makes fabrication easier. "That has been one of the key things that has been missing in the big picture of an all-carbon-based integrated circuit architecture."

New graphene nanoribbons could enable smaller electronic devices

A new collaborative study has reported a 17-carbon wide graphene nanoribbon and found that it has the tiniest bandgap observed so far among familiar graphene nanoribbons prepared through a bottom-up approach.

17-carbon wide graphene nanoribbons to pave the way for new GNR-based electronic devices image(a) Bottom-up synthesis scheme of 17-AGNR on Au(111), (b) high-resolution STM image, and (c) nc-AFM image of 17-AGNR. Image Credit: Junichi Yamaguchi, Yasunobu Sugimoto, Shintaro Sato, Hiroko Yamada.

The study is part of a project of CREST, JST Japan including Nara Institute of Science and Technology (NAIST), the University of Tokyo, Fujitsu Laboratories and Fujitsu.

Researchers manage to grow GNRs directly on top of silicon wafers

Scientist from the University of Wisconsin-Madison are working towards making more powerful computers a reality. To that end, they have devised a method to grow tiny ribbons of graphene directly on top of silicon wafers. Graphene ribbons have a special advantage over graphene sheets - they become excellent semiconductors.

Graphene ribbons grown on silicon achieved by U of WM team imageGraphene nanoribbons on silicon wafers could help lead the way toward super fast computer chips. Image courtesy of Mike Arnold

“Compared to current technology, this could enable faster, low power devices,” says Vivek Saraswat, a PhD student in materials science and engineering at UW-Madison. “It could help you pack in more transistors onto chips and continue Moore’s law into the future”. The advance could enable graphene-based integrated circuits, with much improved performance over today’s silicon chips.