Korean researchers fabricate nitrogen and sulfur co-doped graphene nanoribbons for enhanced potassium batteries

A research team, led by Professor Yu Seung-ho of the Department of Chemical and Biological Engineering at Korea University, Seoul National University's Professor Yuanzhe Piao and Sogang University's Professor Back Seo-in, has fabricate nitrogen and sulfur co-doped graphene nanoribbons with stepped edges, elucidating the migration barrier and enhancing the electrochemical performance of potassium batteries.

Nitrogen and sulfur co-doped graphene make for enhanced batteries image

Potassium has shown promise for large-capacity non-lithium battery cells, because it is affordable, abundant, and has a low redox potential (-2.93V) close to that of lithium ion (-3.04V). Carbon-based nanomaterials, which are chemically stable and lightweight, are popular anode materials used in potassium batteries. However, the high energy barrier between electrochemical intercalation and deintercalation of potassium ions induces adsorption/desorption reactions, resulting in the storage of potassium ions only on the surface of carbon and lowering the energy density during battery assembly. As such, the smooth intercalation/deintercalation of potassium is extremely important in obtaining high-performance potassium batteries.

Researchers stabilize the edges of graphene nanoribbons and measure their magnetic properties

Researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley have developed a method to stabilize the edges of graphene nanoribbons and directly measure their unique magnetic properties.

The team, co-led by Felix Fischer and Steven Louie from Berkeley Lab’s Materials Sciences Division, found that by substituting some of the carbon atoms along the ribbon’s zigzag edges with nitrogen atoms, they could discretely tune the local electronic structure without disrupting the magnetic properties. This subtle structural change further enabled the development of a scanning probe microscopy technique for measuring the material’s local magnetism at the atomic scale.

New method creates sub-10-nm GNRs from squashed carbon nanotubes

Researchers at Shanghai Jiao Tong University, Stanford University, and other US and China institutes have designed a strategy for creating graphene nanoribbons (GNRs) with smooth edges that are below 10 nm in width. This new method is based on the use of squashed carbon nanotubes (CNTs).

The team explained that the idea behind this new work is that if carbon nanotubes (CNTs) can be squashed into GNRs, it would be possible to produce narrow (sub-5-nm wide) GNRs from CNTs that have small diameters. The team said that the GNRs prepared using this method would be much narrower than those obtained by previous methods.

“Bite” defects revealed in bottom-up graphene nanoribbons

Two recent studies by a collaborative team of scientists from two NCCR MARVEL labs have identified a new type of defect as the most common source of disorder in on-surface synthesized graphene nanoribbons (GNRs).

Combining scanning probe microscopy with first-principles calculations allowed the researchers to identify the atomic structure of these so-called "bite" defects and to investigate their effect on quantum electronic transport in two different types of graphene nanoribbon. They also established guidelines for minimizing the detrimental impact of these defects on electronic transport and proposed defective zigzag-edged nanoribbons as suitable platforms for certain applications in spintronics.

Researchers design atomically precise graphene nanoribbon heterojunction sensor

An international research team, led by the University of Cologne, has succeeded in connecting several atomically precise graphene nanoribbons to form complex structures. The scientists have synthesized and spectroscopically characterized nanoribbon heterojunctions, and were able to integrate the heterojunctions into an electronic component. In this way, they have created a novel sensor that is highly sensitive to atoms and molecules.

"The graphene nanoribbon heterojunctions used to make the sensor are each seven and fourteen carbon atoms wide and about 50 nanometres long. What makes them special is that their edges are free of defects. This is why they are called "atomically precise" nanoribbons," explained Dr. Boris Senkovskiy from the Institute for Experimental Physics. The researchers connected several of these nanoribbon heterojunctions at their short ends, thus creating more complex heterostructures that act as tunneling barriers.