Rice University

Rice University and Ford Motors Company use flash Joule heating process to upcycle plastic from end-of-life F-150 trucks

Researchers from Rice University and Ford Motor Company are working together on turning plastic parts from end-of-life vehicles into graphene, via the university’s flash Joule heating process.

Upcycling end-of-life vehicle waste plastic into flash graphene image

The Rice lab of chemist James Tour introduced flash Joule heating in 2020 to convert coal, waste food, plastic and other materials into graphene.

Read the full story Posted: May 27,2022

Rice team modifies its Flash Graphene process to produce doped graphene

The Rice lab of professor James Tour has modified its flash Joule heating process to produce doped graphene that tailors the material’s properties for optical and electronic devices.

Heteroatom-Doped Flash Graphene process image

The modified process shows how graphene can be doped with a single element or with pairs or trios of elements. The process was demonstrated with single elements boron, nitrogen, oxygen, phosphorus and sulfur, a two-element combination of boron and nitrogen, and a three-element mix of boron, nitrogen and sulfur.

Read the full story Posted: Apr 02,2022

New initiative involving U.S Army and academia will promote graphene applications

A new initiative has been established, to explore the development of various applications for graphene, from graphene-infused asphalt and concrete to water filtration systems.

To this end, researchers at the U.S. Army Engineer Research and Development Center (ERDC) will be working with top research institutions and experts from the University of Mississippi (UM), Jackson State University (JSU) and Rice University. The collaboration will explore graphene’s unique abilities in uses ranging from advanced materials-by-design to self-sensing infrastructure.

Read the full story Posted: Feb 24,2022

Machine learning helps improve the flash graphene process

Scientists at Rice University are using machine-learning techniques to fine-tune the process of synthesizing graphene from waste through flash Joule heating. The researchers describe in their new work how machine-learning models that adapt to variables and show them how to optimize procedures are helping them push the technique forward.

Machine Learning Guided Synthesis of Flash Graphene imageMachine learning is fine-tuning Rice University’s flash Joule heating method for making graphene from a variety of carbon sources, including waste materials. Credit: Jacob Beckham, from: Phys.org

The process, discovered by the Rice lab of chemist James Tour, has expanded beyond making graphene from various carbon sources to extracting other materials like metals from urban waste, with the promise of more environmentally friendly recycling to come. The technique is the same: blasting a jolt of high energy through the source material to eliminate all but the desired product. However, the details for flashing each feedstock are different.

Read the full story Posted: Feb 01,2022

Rice team develops an acoustic processing method to analyze LIG synthesis in real time

Researchers at Rice University have found that sound can be used to analyze the properties of laser-induced graphene (LIG) in real time.

The researchers, two of which are brothers, say that they heard something unusual while making graphene. Ultimately, they determined the sound itself could give them valuable data about the product. The brothers, John Li, a Rice alumnus now studying at Stanford University, and Victor Li, then a high school student in New York and now a freshman at the Massachusetts Institute of Technology, are co-lead authors of a paper that describes the real-time analysis of laser-induced graphene (LIG) production through sound.

Read the full story Posted: Jan 20,2022

The U.S. Army funds expansion of "flash" process

The Army Corps of Engineers will work with Prof. Tour and his collaborators at Rice University through a $5.2 million, four-year grant to expand the process that turns waste into graphene through flash Joule heating, to additional materials as well. Among the initiatives is a strategy to recover cobalt, lithium and other elements through the process developed by Tour’s group.

The grant through a Department of the Interior Cooperative Research and Development Agreement will allow the Rice-based team to extend the impact of its discovery that flashing food waste and other trash with a high-voltage jolt of electricity turns it into graphene. Through further experiments, the team realized the process could do much more. We’re pushing the idea that flash Joule heating can go way beyond just graphene, Tour said.

Read the full story Posted: Oct 02,2021

New strategy uses graphene quantum dots to boost catalysts

Rice University researchers, in collaboration with teams at Oak Ridge National Laboratory, University of Saskatchewan, King Abdullah University of Science and Technology and CAS, have used graphene quantum dots (GQDs) to assemble what they say may transform chemical catalysis by greatly increasing the number of transition-metal single atoms that can be placed into a carbon carrier.

General synthesis of single-atom catalysts with high metal loading using graphene quantum dots imageThe process uses functionalized graphene quantum dots to trap transition metals for higher metal loading single-atom catalysis. Illustration courtesy of the Wang Group (from Rice Uni website)

The technique uses graphene quantum dots, 3-5-nanometer particles of graphene, as anchoring supports. These facilitate high-density transition-metal single atoms with enough space between the atoms to avoid clumping.

Read the full story Posted: Jun 26,2021

Rice team modifies laser-induced graphene process to create micron-scale patterns in photoresist

A Rice University team has modified its laser-induced graphene technique to make high-resolution, micron-scale patterns of the conductive material for consumer electronics and other applications. Laser-induced graphene (LIG), introduced in 2014 by Rice chemist James Tour, involves burning away everything except carbon from polymers or other materials, leaving the carbon atoms to reconfigure themselves into films of characteristic hexagonal graphene. The process employs a commercial laser that writes graphene patterns into surfaces that to date have included wood, paper and even food.

Rice lab uses laser-induced graphene process to create micron-scale patterns in photoresist image

The new version writes fine patterns of graphene into photoresist polymers, light-sensitive materials used in photolithography and photoengraving. Baking the film increases its carbon content, and subsequent lasing solidifies the robust graphene pattern, after which unlased photoresist is washed away.

Read the full story Posted: May 07,2021

"Flash Graphene" process modified to produce graphene from rubber waste

The flash process, introduced by Tour and his colleagues at Rice University in 2020, has now been optimized to convert waste from rubber tires into graphene that can, in turn, be used to strengthen concrete.

Rice scientists optimized a process to turn rubber from discarded tires into turbostratic flash graphene image

The atoms reassemble into valuable turbostratic graphene, which has misaligned layers that are more soluble than graphene produced via exfoliation from graphite. That makes it easier to use in composite materials.

Read the full story Posted: Mar 30,2021

Rice team turns pyrolyzed ash into graphene

Researchers at James Tour's lab at Rice University have developed a new process, able to convert worthless pyrolyzed plastic ash into graphene. The technique produces turbostratic graphene flakes that can be directly added to other substances like films of polyvinyl alcohol (PVA) that better resist water in packaging and cement paste and concrete, dramatically increasing their compressive strength.

Converting plastic waste pyrolysis ash into flash graphene image

Similarly to the flash graphene process the Tour lab introduced before, pyrolyzed ash turns into turbostratic graphene. That has weaker attractive interactions between the flakes, making it easier to mix them into solutions.

Read the full story Posted: Jan 12,2021