Talga Resources reports breakthrough on its graphene-infused concrete project

Australia-based advanced materials company Talga Resources has reported high levels of electrical conductivity in concrete by using an additive developed from the Company’s graphene-graphite research and development laboratory in the UK.

Talga reports advancements of graphene-enhanced concrete project image(L) Talga concrete sample after melting 5cm depth of ice from 9v power. (R) Conceptual underfloor heating/road application.

The reported breakthrough offers substantial potential in existing and emerging industrial applications, particularly as concrete is the world’s largest construction material by volume. Talga shared information gathered from tests that show that the graphene-enhanced concrete is highly electrically conductive - attaining 0.05 ohm.cm volume resistivity.

Graphene-based sensors to advance diagnostic genome sequencing

University of Arkansas researchers are working together, with support from the National Institutes of Health, to make that prospect of graphene-based sensors that sequence a patient's genome to predict diseases more realistic. Steve Tung, professor of mechanical engineering, and Jin-Woo Kim, professor of biological engineering, have received a grant (of approximately $400,000) from the NIH's Human Genome Research Institute to develop nanoscale technology designed to make DNA sequencing faster, cheaper and easier.

The base of the research builds on the concept of nanochannel measurement, in which individual strands of DNA pass through a tiny channel. The passage of those strands interrupts an electrical current and a sensor detects the nature of the interruption, telling scientists which nucleotide has passed through the channel.

Inov-8 and manchester University launch graphene-enhanced shoes

In December 2017, Manchester University teamed up with British sportswear brand Inov-8 to become the world's first company to incorporate graphene into running and fitness shoes. Now, Inov-8 announced a new shoe that features graphene, which are hoped to be "a game changer in the industry".

Inov-8 and Manchester University's launch graphene-enhanced shoes image

The Ultimate goal will be to reduce the weight of running shoes by 50%, according to Michael Price, Inov-8’s product and marketing director. The company announced The G-Series range which includes three different shoes – two trail-oriented shoes and one geared for cross-training. The Company estimates that the TerraUltra G 260 will likely be the most popular in Canada – it’s geared for more strenuous trail efforts. The Mudclaw G 260 is geared for extra muddy terrain and obstacle courses. Finally the F-Lite G 290 has been developed for cross-fit athletes to wear in the gym. Each shoe includes graphene-enhanced rubber outsoles and breathable mesh uppers that are enforced with Kevlar.

New material may triple the capacity of a battery cell and cut charging times

Researchers at the Institute of Energy and Climate Research (IEK-1) in Germany have developed a material comprising tin oxide nanoparticles enriched with antimony, on a base layer of graphene, that can reportedly triple the capacity of a battery cell and dramatically cut the charging time.

"An important factor is the anode material," said Prof Dina Fattakhova-Rohlfing from the Institute of Energy and Climate Research (IEK-1), who led the research. "In principle, anodes based on tin dioxide can achieve much higher specific capacities, and therefore store more energy, than the carbon anodes currently being used. They have the ability to absorb more lithium ions. Pure tin oxide, however, exhibits very weak cycle stability - the storage capability of the batteries steadily decreases and they can only be recharged a few times. The volume of the anode changes with each charging and discharging cycle, which leads to it crumbling."

Researchers explain the phenomenon of particle-antiparticle annihilation in graphene

Researchers from the Moscow Institute of Physics and Technology (MIPT) in Russia and Tohoku University in Japan have explained the phenomenon of particle-antiparticle annihilation in graphene, recognized by specialists as Auger recombination.

Teams explain the phenomenon of particle-antiparticle annihilation in graphene imageTwo scenarios of electron-hole recombination in graphene: radiative recombination (left) and Auger recombination (right) in which the energy is picked up by an electron passing by

Despite persistently being spotted in experiments, it was thought to be prohibited by the fundamental physical laws of energy and momentum conservation. The theoretical explanation of this process has until recently remained one of the greatest puzzles of solid-state physics.

Versarien - Think you know graphene? Think again!Versarien - Think you know graphene? Think again!