Researchers develop graphene-based flexible, water-repellent circuits for washable electronics

Researchers at Iowa State University, along with collaborators at Rice University, Ames Laboratory and Lehigh University, have designed a new graphene printing technology that can produce electronic circuits that are low-cost, flexible, highly conductive and water repellent. The scientists explain that this technology could enable self-cleaning wearable/washable electronics that are resistant to stains, or ice and biofilm formation.

Graphene-based flexible, water-repellent circuits for washable electronics image

“We’re taking low-cost, inkjet-printed graphene and tuning it with a laser to make functional materials,” said authors of the paper. The work describes how the team used inkjet printing technology to create electric circuits on flexible materials. In this case, the ink is flakes of graphene. The printed flakes, however, aren’t highly conductive and have to be processed to remove non-conductive binders and weld the flakes together, boosting conductivity and making them useful for electronics or sensors. Such post-print processes typically involve heat or chemicals, but the research group developed a rapid-pulse laser process that treats the graphene without damaging the printing surface – even if it’s paper.

University of Arkansas' aims to commercialize its revolutionary graphene-based VEH technology

A fascinating research out of the University of Arkansas, revealed in November 2017, showed that the internal motion of graphene (and possibly other 2D materials) may be used as a source of clean, limitless energy. Now, NTS Innovations (also known as Nanotube Solutions), a U.S -based nanotechnology company, has licensed this patent-pending technology from the university and plans to use it to fabricate devices and systems that produce energy without consuming fuel or creating pollution.

NTS Innovations focuses on the commercialization of nanotechnology and environmentally sustainable heating, water filtration and purification, as well as the production of green energy, all using 2D materials. The company sees great potential for this discovery in many applications. For example, it could be used to create sustainable, decentralized energy systems throughout the world, especially in places where the energy grid system is underdeveloped or nonexistent. It may also prove beneficial in biomedical devices, enhanced solar and wind production, capturing waste heat and remote sensing devices.

Crumpled graphene balls to enhance Li-ion batteries by preventing dendrite growth

Researchers at Northwestern University in the U.S have designed a way to use "crumpled graphene balls" to improve Li-ion batteries. The team explained that in current batteries, lithium is usually atomically distributed in another material like graphite or silicon in the anode. However, using an additional material 'dilutes' the battery's performance.

Crumpled graphene balls to enhance Li-ion batteries image

Since Lithium is a metal, it sounds logical to use lithium by itself, but researchers have spent years trying to do so without sufficient success. The biggest challenge has been that when lithium charges and discharges, it can generate dendrites and filaments, with implications for safety and reliability. The team said: "At best, it leads to rapid degradation of the battery's performance. At worst, it causes the battery to short or even catch fire."

New graphene-based 'atomristors' could pave the way towards more powerful computing

Researchers at The University of Texas at Austin, in collaboration with Peking University scientists, have developed what they refer to as the thinnest memory storage device with dense memory capacity, paving the way for faster, smaller and smarter computer chips for everything from consumer electronics to big data to brain-inspired computing.

They named their creation "atomristors", and stated that before this work, it was considered impossible to make memory devices from materials that were only one atomic layer thick, The the "atomristors" improve upon memristors, an emerging memory storage technology with lower memory scalability.

New graphene-based catalyst for hydrogen production could be a step toward clean fuel

Researchers at UC Santa Cruz South and the China University of Technology have developed a graphene-based nanostructured composite material that shows impressive performance as a catalyst for the electrochemical splitting of water to produce hydrogen. An efficient, low-cost catalyst is essential for realizing the promise of hydrogen as a clean, environmentally friendly fuel.

The team has been investigating the use of carbon-based nanostructured materials as catalysts for the reaction that generates hydrogen from water. In a recent study, they obtained good results by incorporating ruthenium ions into a sheet-like nanostructure composed of carbon nitride. Performance was further improved by combining the ruthenium-doped carbon nitride with graphene, to form a layered composite.

XFNANO: Graphene and graphene-like materials since 2009XFNANO: Graphene and graphene-like materials since 2009