Schwarzite carbon structures identified

University of California, Berkeley, researchers have found that three carbon structures recently created by scientists in South Korea and Japan are in fact schwarzites, an elusive carbon structure which researchers predict will have unique electrical and storage properties like those of carbon nanotubes and graphene.

Schwarzites: Long-sought carbon structure joins graphene, fullerene family image

The new structures were built inside the pores of zeolites, crystalline forms of silicon dioxide—sand—more commonly used as water softeners in laundry detergents and to catalytically crack petroleum into gasoline. Called zeolite-templated carbons (ZTC), the structures were being investigated for possible interesting properties, though the creators were unaware of their identity as schwarzites, which theoretical chemists have worked on for decades.

Vollebak launches a graphene-enhanced jacket

Vollebak, a sports gear manufacturer with an affinity towards using next-gen materials and technologies, is now selling (for 595 euros!) a graphene-enhanced jacket that according to the company, can perform functions like absorbing heat and then warming you up over time, conducting electricity, repelling bacteria, and dissipating your body’s excess humidity.

Vollebak's graphene-enhanced jacket image

The process of developing Vollebak’s jacket, according to the company’s cofounders, brothers Steve and Nick Tidball, took years of intensive research. The jacket is reportedly made out of a two-sided material, which the company invented during the extensive R&D process. The graphene side is gray, while the other side appears matte black. To create it, the scientists turned raw graphite into graphene nanoplatelets (GNPs) that were then blended with polyurethane to create a membrane. That, in turn, is bonded to nylon to form the other side of the material, which Vollebak says alters the properties of the nylon itself. “Adding graphene to the nylon fundamentally changes its mechanical and chemical properties–a nylon fabric that couldn’t naturally conduct heat or energy, for instance, now can,” the company claims.

China-US team uses graphene composite separator to achieve robust Li-S batteries

A team of researchers from The University of Texas at Austin and University of California in the US, along with teams from the University of Electronic Science and Technology, Hunan University and Soochow University in China, report the design of a negatively charged graphene composite separator for the effective suppression of the polysulfide shuttling effect in Li-sulfur batteries. The negatively charged 3D porous structure effectively inhibits the translocation of negatively charged polysulfide ions to enable highly robust Li-S batteries.

China-US team uses graphene composite separator to suppress polysulfide shuttling in Li-S batteries image

In their paper, the researchers show that by using a reduced graphene oxide (rGO)/sodium lignosulfonate (SL) composite on the standard polypropylene (PP) separator (rGO@SL/PP), they demonstrated a highly robust Li-S battery with a capacity retention of 74% over 1,000 cycles.

Researchers manipulate the width of GNRs to create quantum chains that could be used for nano-transistors and quantum computing

Researchers at EMPA (Swiss Federal Laboratories for Materials Science and Technology), along with colleagues from the Max Planck Institute for Polymer Research in Mainz and other partners, have succeeded in precisely controlling the properties of graphene nano-ribbons (GNRs) by specifically varying their shape. This can be used to generate specific local quantum states, and could in the future be used for precise nano-transistors or possibly even quantum computing.

Researchers manipulate the width of GNRs to create quantum chains that could be used for nano-transistors and quantum computing image

The team has shown that if the width of a narrow graphene nano-ribbon changes, in this case from seven to nine atoms, a special zone is created at the transition: because the electronic properties of the two areas differ in a special, topological way, a "protected" and thus very robust new quantum state is created in the transition zone. This local electronic quantum state can be used as a basic component to produce tailor-made semiconductors, metals or insulators - and perhaps even as a component in quantum computers.

Carbon nanotubes help create reinforced graphene "rebar"

Rice University researchers have found that fracture-resistant “rebar graphene” is more than twice as tough as pristine graphene. While on the two-dimensional scale, graphene is stronger than steel, its extremely thin nature makes it subject to ripping and tearing. Rebar graphene is the nanoscale analog of rebar (reinforcement bars) in concrete, in which embedded steel bars enhance the material’s strength and durability. Rebar graphene, developed by the Rice lab of chemist James Tour in 2014, uses carbon nanotubes for reinforcement.

In a new study, Rice materials scientist Jun Lou, graduate student and lead author Emily Hacopian and collaborators, including Prof. James Tour, stress-tested rebar graphene and found that nanotube rebar diverted and bridged cracks that would otherwise propagate in unreinforced graphene.

Versarien - Think you know graphene? Think again!Versarien - Think you know graphene? Think again!