Korea-based ETRI develops OLED display with graphene transparent electrodes

Apr 11, 2017

Researchers from the Korea-based ETRI (Electronics and Telecommunications Research Institute) have used graphene transparent electrodes to create an OLED display, 370mm x 470mm in size.

ETRI graphene-electrode OLED prototype, Apr 2017

The ETRI team designed a process that can pattern a graphene-made transparent electrode in accurate size on a glass substrate. The researchers replaced indium tin oxide used for current commercial applications, that is a rare metal known for being brittle.

Researchers from Singapore's SUTD design a graphene-based high-efficiency energy harvesting device

Apr 09, 2017

Researchers from the Singapore University of Technology and Design (SUTD) have proposed a high-efficiency energy harvesting device based on graphene electrodes and 2D transition metal dichalcogenide materials.

Graphene-TMDs TEC device image

Inspired by the concept of multilayer thermionic devices, the team designed a solid-state thermionic device using van der Waals (vdW) heterostructure sandwiched between two graphene electrodes, to achieve high energy conversion efficiency in the temperature range of 400 to 500 K. The technology enables performance (8% above) of devices comparable to or even better than state-of-art thermoelectric devices around room temperature. This novel design may boost interest in thermionic emission-based energy conversion and pave the way towards another alternative to solutions to low-grade waste heat harvesting.

Chinese team designs new graphene-based method to absorb oil spills

Apr 09, 2017

Researchers at the University of Science and Technology of China have shown that graphene-wrapped sponges can provide an effective and fast way to absorb spilled crude oil when heated with an applied electric current.

The team wrapped porous material with a thin graphene layer, put the coated sponge in water mixed with crude oil, and applied an electric current to the graphene to warm it up. The process reduces the viscosity of crude oil, thus speeding up the oil-absorption time, according to reports.

Graphene Flagship team creates transistors printed with graphene and other layered materials

Apr 09, 2017

Graphene Flagship researchers from AMBER at Trinity College Dublin, in collaboration with scientists from TU Delft, Netherlands, have fabricated printed transistors consisting entirely of layered materials. The team's findings are said to have the potential to cheaply print a range of electronic devices from solar cells to LEDs and more.

The team used standard printing techniques to combine graphene flakes as the electrodes with other layered materials, tungsten diselenide and boron nitride as the channel and separator to form an all-printed, all-layered materials, working transistor.

Researchers from India use mango leaves to make fluorescent graphene quantum dots

Apr 09, 2017

Researchers from the Indian Institute of Technology (IIT) have used mango leaves to synthesize fluorescent graphene quantum dots, and integrated those into probes for bioimaging and intracellular temperature sensing.

The unique quantum dots are reportedly biocompatible, have excellent photostability and show no cellular toxicity. To make them, the team cut mango leaves and froze them using liquid nitrogen. The frozen leaves were crushed into powder and dipped in alcohol. The extract was centrifuged and the supernatant evaporated in an evaporator and then heated in a microwave for five minutes to get a fine powder.