Graphene acts as superconductor, insulator and ferromagnet in a single device

A collaborative group of scientists has designed a device that makes use of graphene’s assorted talents: superconducting, insulating, and a type of magnetism called ferromagnetism. The multitasking device could enable new physics experiments, such as research in the pursuit of an electric circuit for faster, next-generation electronics like quantum computing technologies.

The graphene deviceon a silicon dioxide/silicon chip imageAn optical image of the graphene device (shown above as a square gold pad) on a silicon dioxide/silicon chip. Shining metal wires are connected to gold electrodes for electrical measurement. (Credit: Guorui Chen/Berkeley Lab)

“So far, materials simultaneously showing superconducting, insulating, and magnetic properties have been very rare. And most people believed that it would be difficult to induce magnetism in graphene, because it’s typically not magnetic. Our graphene system is the first to combine all three properties in a single sample,” said Guorui Chen, a postdoctoral researcher in Wang’s Ultrafast Nano-Optics Group at UC Berkeley, and the study’s lead author.

Haydale and Welsh Centre for Printing and Coatings secure English Institute for Sport contract

Haydale Haydale logohas announced that it will now collaborate with the English Institute for Sport (EIS) and the Welsh Centre for Printing and Coating (WCPC) to deliver a range of advanced wearable technology sport apparel for elite athletes.

Haydale has reported that initial prototype testing has been completed in live performance sessions with elite athletes with very successful results for wearability through its unique coating systems. Alongside supply chain partners, a range of garments are being manufactured in higher quantities for further use in elite sport settings, focusing on efforts to develop flexible and miniaturized electronics. This enhances product feel as well as reducing weight, allowing for optimized athlete performance.

Graphene helps in creating efficient tandem perovskite solar cell

Italian researchers from two Italian institutions have used graphene to develop a perovskite-silicon solar cell - a promising new solar technology - with an impressive conversion efficiency of 26.3%.

Structure of graphene-enhanced PSC image

The researchers added graphene to the titanium dioxide electron selective layer used in a perovskite solar cell in order to increase chemical stability. The two-terminal cell was made by stacking two sub-cells which were fabricated and optimized separately. The new device blends the advantages of thin-film perovskite and silicon-based heterojunction cells, according to its developers.

Graphene-based stress sensor could help NASA in testing anxiety levels of astronauts

A new graphene-based sensor that measures stress via cortisol in sweat could be used by NASA to gauge the anxiety levels of astronauts.

Graphene-enhanced stress monitor to help NASA image

Developed by Caltech assistant professor of medical engineering, Wei Gao, the device features a plastic sheet etched with a laser to generate a 3D graphene structure with tiny pores in which sweat can collect. Those pores create a large amount of surface area in the sensor, which makes it sensitive enough to detect compounds in the sweat that are only present in very small amounts. Those tiny pores are also coupled with an antibody sensitive to cortisol, allowing the sensor to detect the compound.

Researchers explore graphene's superconductive state

Researchers at Aalto University and the University of Jyväskylä showed that graphene can be a superconductor at a much higher temperature than expected, due to a subtle quantum mechanics effect of graphene's electrons.

The discovery of the superconducting state in twisted bilayer graphene spurred an intense debate among physicists regarding the origin of superconductivity in graphene. Although superconductivity was found only at a few degrees above the absolute zero of temperature, uncovering its origin could help understanding high-temperature superconductors and allow us to produce superconductors that operate near room temperature. Such a discovery has been considered one of the "holy grails" of physics, as it would allow operating computers with radically smaller energy consumption than today.

Want to be part of a graphene company? planarTECH is crowdfunding! Want to be part of a graphene company? planarTECH is crowdfunding!