Understanding the "coffee ring effect" leads to better graphene and 2D inks

Researchers from Imperial College London, Durham University, University of Cambridge, The Chinese University of Hong Kong, Zhejiang University, Beihang University, Nanjing Tech University, Macquarie University, University of British Columbia and Aalto University have collaborated to examine the "coffee ring effect" which has been hindering the industrial deployment of functional inks with graphene, 2D materials, and nanoparticles because it makes printed electronic devices behave irregularly.

Ink examples and corresponding optical micrographs of printed single lines on Si/SiO2 image

The team of researchers has now created a new family of inks that overcomes this problem, enabling the fabrication of new electronics such as sensors, light detectors, batteries and solar cells.

Researchers show the amphipathic nature of graphene flakes and examine their potential for use as surfactant

Researchers at Cranfield University and the University of Cambridge in the UK, Institut Pasteur in France, Silesian University of Technology in Poland and UniversIti Teknologi PETRONAS in Malaysia have found that at a particular size (below 1-micron lateral size), it is possible to achieve amphiphilic behaviour in graphene. This graphene flake attracts water at its edges but repels it on its surface, making it a new generation of surfactant that can stabilize oil and water mixtures.

In a statement, Krzysztof Koziol, Professor of Composites Engineering and Head of the Enhanced Composites and Structures Centre at Cranfield University said, “This new finding, and clear experimental demonstration of surfactant behavior of graphene, has exciting possibilities for many industrial applications. We produced pristine graphene flakes, without application of any surface treatment, at a specific size which can stabilize water/oil emulsions even under high pressure and high temperature... Unlike traditional surfactants which degrade and are often corrosive, graphene opens new level of material resistance, can operate at high pressures, combined with high temperatures and even radiation conditions; and we can recycle it. Graphene has the potential to become a truly high-performance surfactant.”

Graphene production systems maker planarTECH launches an equity crowdfunding campaign to support its future growth potential

UK-based planarTECH is launching an equity crowdfunding campaign at on Seedrs, as part of Graphene-Info's Graphene Crowdfunding Arena. planarTECH aims to expand its current business and also initiate new graphene endeavors.

planarTECH planarGROW 8S photo

planarTECH, founded in 2014, supplies CVD equipment for the production of high quality graphene sheets, as well as other 2D materials. The company was focused on research institutes, and already sold over 65 systems with a customer list that includes Manchester University, the University of Cambridge, Stanford University and the National University of Singapore.

Paragraf raises USD$16 million to push forward graphene-based electronics technologies

Paragraf logo imageUK-based graphene technology company Paragraf has announced the close of its £12.8 million (over $16 million USD ) Series A round led by Parkwalk. The round also included investment from IQ Capital Partners, Amadeus Capital Partners and Cambridge Enterprise, the commercialization arm of the University of Cambridge, as well as several angel investors. The funding will aim to see Paragraf’s first graphene-based electronics products reach the market, transitioning the company into a commercial, revenue-generating entity.

Paragraf sets out to deliver IP-protected graphene technology using standard, mass production scale manufacturing approaches, enabling step-change performance enhancements to today’s electronic devices. The company’s first sensor products have reportedly demonstrated order of magnitude operational improvements over today’s incumbents. Achieving large-scale, graphene-based production technology may enable next generation electronics, including vastly increased computing speeds, significantly improved medical diagnostics and higher efficiency renewable energy generation as well as currently unachievable products such as instant charging batteries and very low power, flexible electronics.

Researchers develop washable, wearable graphene capacitors that can be woven directly into clothes

Researchers at the University of Cambridge and Jiangnan University in China have developed graphene-enhanced wearable electronic components incorporated directly into fabrics. The devices could be used for flexible circuits, healthcare monitoring, energy conversion, and other applications.

The researchers have shown how graphene and other related materials can be directly incorporated into fabrics to produce charge storage elements such as capacitors, paving the way to textile-based power supplies which are washable, flexible and comfortable to wear.