Versarien provides updates on several energy storage R&D fronts

Versarien LogoVersarien, the advanced materials engineering group, has provided an update on its activities in relation to graphene-enhanced power storage devices like batteries and supercapacitors. The primary goal of incorporating graphene into these devices, Versarien says, is to significantly increase power storage capacity and reduce charging times.

Versarien has been working with WMG (Warwick Manufacturing Group) and their partner companies and scientists at the universities of Warwick and Cambridge to collaborate on the production of power storage devices such as batteries and supercapacitors using Versarien's proprietary Nanene graphene nano platelets. Significant advances have been made through incorporating the Company's high quality graphene into these devices and the Company looks forward to commercial products becoming available in due course.

Talga to participate in ‘Faraday Battery Challenge’ program

Talga Resources logo 2017Australia-based Talga Resources and its UK subsidiary Talga Technologies recently announced collaboration agreements to commence three UK Government Faraday Challenge battery programs. The execution of formal agreements follows the awarding of the grants under Faraday, a £246 million UK Government commitment over the next four years into battery development for automotive electrification. The initiative will encompass cell manufacture, modules, battery pack design/assembly and vehicle applications, and follows an undertaking by the UK Government to place a ban on new petrol and diesel engines by 2040.

Talga’s participation in the funding program of Innovate UK, the government development body, follows successful tests by Talga of its natural carbon materials and technologies in Li-ion batteries. Talga, together with its consortia partners, secured significant funding support under the ‘Innovation’ aspect of Faraday. Talga will receive a 70% rebate against its eligible costs, including salaries, consumables, equipment and contractor expenses. Talga’s participation in the programs range from 12-24 months and development activities will be led from Talga Technologies Limited in Cambridge UK, utilizing the Company's Swedish high grade graphite and functionalized graphene processed at Talga’s test facility in Germany.

An inexpensive, flexible pressure sensor can be used as a wearable device for various health monitoring applications

A team led by researchers from the Indian Institute of Technology (IIT) in Bombay, India, has developed a graphene-enhanced inexpensive, flexible pressure sensor that can be used for various health-care applications. The piezoresistive pressure sensor can reportedly monitor even small-scale movements caused by low-pressure variations.

The sensor can measure blood pulse rate in real time when placed on the wrist and neck. The sensor was also tested for its ability to monitor respiration; When placed on the throat, the sensor could detect changes in pressure when different words were pronounced. Interestingly, the fabricated sensor also showed good sensitivity in detecting large-scale motion monitoring, as in the case of bending and extension of finger joints.

Graphene shows promise for aerospace applications

As part of a collaboration between the Graphene Flagship and the European Space Agency, experiments testing graphene for two different space-related applications have been performed. These have been reported to show very promising results, based on which the Flagship is to continue the development of graphene devices for use in space.

Flagship and ESA collaborate on graphene for aerospace applications tests image

Graphene's excellent thermal properties are promising for improving the performance of loop heat pipes, thermal management systems used in aerospace and satellite applications. Graphene could also have a use in space propulsion, due to its lightness and strong interaction with light. The Graphene Flagship tested both these applications in recent experiments in November and December 2017.

Cambridge University inkjet prints graphene-hBN FETs on textiles

Researchers from Cambridge University have demonstrated how graphene and other related 2D materials (namely hBN) can be directly printed onto textiles to create fully inkjet-printed dielectrically gated field effect transistors (FETs) with solution processed 2D materials.

Cambridge team prints graphene-hbn inks on textiles image

According to the team, these devices are washable, flexible, cheap, safe, comfortable to wear and environmentally-friendly, essential requirements for applications in wearable electronics. The team also demonstrated the first reprogrammable memories, inverters and logic gates with solution processed 2D materials by coupling these FETs together to create integrated circuits, the most fundamental components of a modern-day computer.