You are here

Researchers use graphene oxide to design a low-cost system that captures cells efficiently

Mar 05, 2017

Researchers at MIT and National Chiao Tung University have designed a graphene oxide-based system that could make it possible to capture and analyze individual cells from a small sample of blood, potentially leading to very low-cost diagnostic systems that could be used almost anywhere.

Graphene oxide captures cells image

The new system, based on specially treated sheets of graphene oxide. The team explains that the key to the new process is heating the graphene oxide at relatively mild temperatures. This low-temperature annealing makes it possible to bond particular compounds to the material's surface. These compounds in turn select and bond with specific molecules of interest, including DNA and proteins, or even whole cells. Once captured, those molecules or cells can then be subjected to a variety of tests.

Zenyatta Ventures' graphite successfully turned into graphene oxide for sensing applications

Mar 02, 2017

Zenyatta logo imageZenyatta Ventures has announced that a team of scientists at Lakehead University in Canada has made significant progress in developing sensing applications with the first graphene oxide (GO) produced from the Company’s Albany graphite.

The team has developed a novel one-pot synthesis of fluorine functionalized graphene oxide (F-GO) which can be used in many energy, environmental and electrochemical sensing applications. The produced F-GO has been tested for the simultaneous detection of various toxic metal ions (e.g. mercury, lead, cadmium and copper) and a substantial improvement in the electrochemical sensing performance was achieved in comparison with GO.

Graphene to enable an artificial throat able to generate and detect sound

Mar 01, 2017

Researchers at the China-based Tsinghua University have designed an intelligent artificial throat device using laser-induced graphene that can generate and detect sound. Many technologies have been developed to help vocally-impaired people, but most rely on alternatives to speech instead of actual vocal expression. These are also quite expensive and complex. The researchers in this study have developed a one-step process to fabricate a low-cost and wearable LIG artificial throat, that exhibits a high performance for both generating and detecting sounds. It is the LIG within the device, which possesses fantastic thermoacoustic and piezoresistive properties, that enables the functional integration of emitting and detection within a single device.

Graphene-based artificial throat image

As a sound source, the device can generate a wide-band sound source with a frequency of 100 Hz to 40 kHz. The device also has a broad frequency spectrum due to resonance-free oscillations from the sound sources. As a detector, the artificial throat device shows a unique response towards different kinds of sounds and throat vibrations. The device can recognize vocal activities such as coughing, humming and screaming at different tones and volumes, through the mechanical vibrations of the throat cords with fine repetition. This recognition is performed with clear distinction due to the differentiation of their specific waveforms. It also has the capability to recognize words and sentences. The different volumes and/or frequencies can be transformed into controllable and pre-designed sounds. The excellent mechanical properties of the device also allow the device to be capable of voice recognition.

Monash University, Ionic Industries and Clean TeQ receive grant to develop GO-based water-treatment technology

Feb 22, 2017

Clean TeQ Holdings, along with Monash University and Ionic Industries, received a grant of $632,285 AUD (almost $500,000 USD) from the Australian Government under the Cooperative Research Centre’s Project (CRC-P) program, to develop energy efficient wastewater treatment technology using graphene oxide technology. The new project is scheduled to commence in March 2017.

Water treatment photo

Researchers at Monash University have developed a method of producing graphene oxide which is suitable for the production of water and wastewater filtration products. Clean TeQ has already commercialized its Continuous Ionic Filtration (CIF®) technology which is used for water and wastewater filtration. The use of graphene oxide adsorbents in Clean TeQ ‘s process will allow the capture of non-ionic species and thereby extend the range of waters than can be successfully treated.

Nippon Shokubai succeeds in mass production test of GO-based materials

Feb 13, 2017

Nippon Shokubai logo imageNippon Shokubai, a Japan-based global materials provider, has announced its success in mass production tests of graphene oxide-based materials. The production volume attained in the mass production test was reportedly improved dozens of times as much as that attained at laboratory, and Nippon Shokubai will start to provide graphene oxide-based materials as samples for application development.

The graphene oxide-based materials are lamellar carbon compounds with the approximately 1nm thickness and the company expects them to be suitable for various functional materials, such as lubricants, water treatment membranes, and catalysts. Nippon Shokubai stated that it has resolved various problems relating to chemical reactions of the production process and succeeded in the mass production test by utilizing its control technology for stable proceeding of chemical reactions in collaboration with Okayama University which retained academic knowledge about reaction mechanism of graphene oxide.