You are here

What is graphene?

Graphene is a material made of carbon atoms that are bonded together in a repeating pattern of hexagons. Graphene is so thin that it is considered two dimensional. Graphene's flat honeycomb pattern gives it many extraordinary characteristics, such as being the strongest material in the world, as well as one of the lightest, most conductive and transparent. Graphene has endless potential applications, in almost every industry (like electronics, medicine, aviation and much more).

An ideal graphene sheet image



The single layers of carbon atoms provide the basis for many other materials. Graphite, like the substance found in pencil lead, is formed by stacked graphene. Carbon nanotubes are made of rolled graphene and are used in many emerging applications from sports gear to biomedicine.

What is graphene oxide?

As graphene is expensive and relatively hard to produce, great efforts are made to find effective yet inexpensive ways to make and use graphene derivatives or related materials. Graphene oxide (GO) is one of those materials - it is a single-atomic layered material, made by the powerful oxidation of graphite, which is cheap and abundant. Graphene oxide is an oxidized form of graphene, laced with oxygen-containing groups. It is considered easy to process since it is dispersible in water (and other solvents), and it can even be used to make graphene. Graphene oxide is not a good conductor, but processes exist to augment its properties. It is commonly sold in powder form, dispersed, or as a coating on substrates.

Graphene Oxide structure

Graphene oxide is synthesized using four basic methods: Staudenmaier, Hofmann, Brodie and Hummers. Many variations of these methods exist, with improvements constantly being explored to achieve better results and cheaper processes. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the graphene oxide.

Graphene oxide uses

Graphene Oxide films can be deposited on essentially any substrate, and later converted into a conductor. This is why GO is especially fit for use in the production of transparent conductive films, like the ones used for flexible electronics, solar cells, chemical sensors and more. GO is even studied as a tin-oxide (ITO) replacement in batteries and touch screens.

Graphene Oxide has a high surface area, and so it can be fit for use as electrode material for batteries, capacitors and solar cells. Graphene Oxide is cheaper and easier to manufacture than graphene, and so may enter mass production and use sooner.

GO can easily be mixed with different polymers and other materials, and enhance properties of composite materials like tensile strength, elasticity, conductivity and more. In solid form, Graphene Oxide flakes attach one to another to form thin and stable flat structures that can be folded, wrinkled, and stretched. Such Graphene Oxide structures can be used for applications like hydrogen storage, ion conductors and nanofiltration membranes.

Graphene oxide is fluorescent, which makes it especially appropriate for various medical applications. bio-sensing and disease detection, drug-carriers and antibacterial materials are just some of the possibilities GO holds for the biomedical field.

Buy Graphene Oxide

Graphene oxide is relatively affordable and easy to find, with many companies that sell it. It does, however, get confusing since different companies offer products that vary in quality, price, form and more - making the choice of a specific product challenging. If you are interested in buying GO, contact Graphene-Info for advisement on the right GO for your exact needs!

Further reading

Latest Graphene Batteries news

Graphene-Info launches a new Graphene Oxide market report

Jan 05, 2017

We're happy to announce a new market report, Graphene Oxide Market Report. This report, brought to you by the world's leading graphene experts, is a comprehensive guide to the graphene oxide market. Graphene Oxide is an exciting material with promising applications in diverse areas - including energy storage, composite materials, bio-medical, water treatment and more. Graphene Oxide can also be reduced to make conductive graphene flakes (r-GO).

graphene oxide- report cover

Reading this report, you'll learn all about:

  • The difference between graphene oxide and graphene
  • Graphene oxide properties
  • Possible applications for graphene oxide
  • Reduction of graphene oxide to r-GO
  • Available materials on the market

The report also provides:

  • A list of prominent GO research activities
  • A list of all graphene oxide developers and their products
  • Sample graphene oxide implementations
  • Datasheets for over 20 different GO materials
  • Free updates for a year

Exeter team unveils novel graphene production method that could accelerate commercial graphene use

Dec 14, 2016

Researchers from the University of Exeter have developed a new method for creating entire device arrays directly on the copper substrates used for commercial manufacture of graphene. Complete and fully-functional devices can then be transferred to a substrate of choice, such as silicon, plastics or even textiles.

Exeter University's new graphene production method image

This new approach is said to be cheaper, simpler and less time consuming than conventional ways of producing graphene-based devices, thus holding real potential to open up the use of cheap-to-produce graphene devices for a host of applications from gas and biomedical sensors to displays.

Graphene for the Display and Lighting Industries

Graphene oxide helps in creating antibacterial 'cloak'

Dec 11, 2016

Researchers at the Catholic University of the Sacred Heart (UCSC) and the National Research Council (ISC-CNR) in Italy have used graphene oxide to develop an antimicrobial ‘cloak’ which could play a key role in protecting from the build-up of dangerous microbial biofilms.

The team found that an agar hydrogel that contains graphene-oxide and laser printed to mimic the shell surface of the Cancer pagurus crab, acts to lower growth of gram-positive and gram-negative bacteria, and fungal cells. The Cancer pagurus crab evolved an interesting defense against microbial infection - a shell where the outer surface, or the carapace, is shaped in a way which makes it much harder for microbes to grow.

GRAMOFON project aims to capture CO2 with the help of graphene aerogels

Dec 08, 2016

Project GRAMOFON, a 3.5 year project that started in October 2016, aims to establish a process for efficient CO2 capture by innovative adsorbents based on modified graphene aerogels and MOF materials. The EU will contribute nearly €4.2 million to the project.

The key objectives of GRAMOFON projects are:

  • to develop and prototype a new energy and cost-competitive dry separation process for post-combustion CO2 capture based on innovative hybrid porous solids Metal organic frameworks (MOFs) and Graphene Oxide nanostructures.
  • to optimize the CO2 desorption process by means of Microwave Swing Desorption (MSD) and Joule effect, that will surpass the efficiency of the conventional heating procedures.

Nanjing team develops graphene oxide-based solar desalination system

Dec 05, 2016

Researchers from the Chinese Nanjing University have reportedly developed a graphene oxide-based solar desalination system that does not require a solar concentrator or thermal insulation. Featuring a confined 2D water channel, the system is able to achieve high levels of solar absorption and effective desalination.

The research team stated that it used a graphene oxide film as the basis for a device. The graphene oxide film is said to be foldable and produced using a scalable process. With this at the core of the system, the researchers believe that the development represents "a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution".