You are here

What is graphene?

Graphene is a material made of carbon atoms that are bonded together in a repeating pattern of hexagons. Graphene is so thin that it is considered two dimensional. Graphene's flat honeycomb pattern gives it many extraordinary characteristics, such as being the strongest material in the world, as well as one of the lightest, most conductive and transparent. Graphene has endless potential applications, in almost every industry (like electronics, medicine, aviation and much more).

An ideal graphene sheet image



The single layers of carbon atoms provide the basis for many other materials. Graphite, like the substance found in pencil lead, is formed by stacked graphene. Carbon nanotubes are made of rolled graphene and are used in many emerging applications from sports gear to biomedicine.

What is graphene oxide?

As graphene is expensive and relatively hard to produce, great efforts are made to find effective yet inexpensive ways to make and use graphene derivatives or related materials. Graphene oxide (GO) is one of those materials - it is a single-atomic layered material, made by the powerful oxidation of graphite, which is cheap and abundant. Graphene oxide is an oxidized form of graphene, laced with oxygen-containing groups. It is considered easy to process since it is dispersible in water (and other solvents), and it can even be used to make graphene. Graphene oxide is not a good conductor, but processes exist to augment its properties. It is commonly sold in powder form, dispersed, or as a coating on substrates.

Graphene Oxide structure

Graphene oxide is synthesized using four basic methods: Staudenmaier, Hofmann, Brodie and Hummers. Many variations of these methods exist, with improvements constantly being explored to achieve better results and cheaper processes. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the graphene oxide.

Graphene oxide uses

Graphene Oxide films can be deposited on essentially any substrate, and later converted into a conductor. This is why GO is especially fit for use in the production of transparent conductive films, like the ones used for flexible electronics, solar cells, chemical sensors and more. GO is even studied as a tin-oxide (ITO) replacement in batteries and touch screens.

Graphene Oxide has a high surface area, and so it can be fit for use as electrode material for batteries, capacitors and solar cells. Graphene Oxide is cheaper and easier to manufacture than graphene, and so may enter mass production and use sooner.

GO can easily be mixed with different polymers and other materials, and enhance properties of composite materials like tensile strength, elasticity, conductivity and more. In solid form, Graphene Oxide flakes attach one to another to form thin and stable flat structures that can be folded, wrinkled, and stretched. Such Graphene Oxide structures can be used for applications like hydrogen storage, ion conductors and nanofiltration membranes.

Graphene oxide is fluorescent, which makes it especially appropriate for various medical applications. bio-sensing and disease detection, drug-carriers and antibacterial materials are just some of the possibilities GO holds for the biomedical field.

Buy Graphene Oxide

Graphene oxide is relatively affordable and easy to find, with many companies that sell it. It does, however, get confusing since different companies offer products that vary in quality, price, form and more - making the choice of a specific product challenging. If you are interested in buying GO, contact Graphene-Info for advisement on the right GO for your exact needs!

Further reading

Latest Graphene Oxide news

GRAMOFON project aims to capture co2 with the help of graphene aerogels

Dec 08, 2016

Project GRAMOFON, a 3.5 year project that started in October 2016, aims to establish a process for efficient CO2 capture by innovative adsorbents based on modified graphene aerogels and MOF materials. The EU will contribute nearly €4.2 million to the project.

The key objectives of GRAMOFON projects are:

  • to develop and prototype a new energy and cost-competitive dry separation process for post-combustion CO2 capture based on innovative hybrid porous solids Metal organic frameworks (MOFs) and Graphene Oxide nanostructures.
  • to optimize the CO2 desorption process by means of Microwave Swing Desorption (MSD) and Joule effect, that will surpass the efficiency of the conventional heating procedures.

Nanjing team develops graphene oxide-based solar desalination system

Dec 05, 2016

Researchers from the Chinese Nanjing University have reportedly developed a graphene oxide-based solar desalination system that does not require a solar concentrator or thermal insulation. Featuring a confined 2D water channel, the system is able to achieve high levels of solar absorption and effective desalination.

The research team stated that it used a graphene oxide film as the basis for a device. The graphene oxide film is said to be foldable and produced using a scalable process. With this at the core of the system, the researchers believe that the development represents "a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution".

Graphene Batteries Market Report

Biolin Scientific commercializes a graphene oxide sensor developed by ICN2

Nov 30, 2016

A graphene oxide (GO) sensor co-developed by the ICN2 Nanobioelectronics and Biosensors group has recently been added to the list products offered by Biolin Scientific, a prestigious instrumentation company devoted to the production of analytical devices. The Q-Sense GO sensor enables interaction studies of GO with various analytes (measured substances) of interest and may open the door to various applications with interest for diagnostics, safety/security and environmental monitoring.

Bioline Q-Sensor image

Biolin Scientific, a leading Nordic instrumentation company, develops products based on nanotechnology and advanced measurement techniques. The company has a line of instrumentation called Q-Sense, which deals with instruments that enable real-time analysis of surface-molecule interactions with nanogram precision for a wide variety of samples and measurement conditions. Biolin Scientific wanted to incorporate a graphene coated sensor in its Q-Sense sensors list. The collaboration between ICN2 and the Nordic company became plausible because the Institute already had expertise transferring graphene to the surface of interest.

ORA develops GO-enhanced membrane for loudspeakers

Nov 20, 2016

ORA, a Canada-based early-stage start-up that develops graphene-enhanced audio equipment, has unveiled its graphene oxide-based composite material, dubbed grapheneQ. The material was thus named because of its low density and high stiffness, that reportedly allow for louder drivers that have a lower Q resonance, and has been specially designed for use in acoustic transducers.

ORA's graphene-enhanced loudspeaker membrane image

Loudspeakers work by vibrating a thin diaphragm. These vibrations then create pressure waves in surrounding air that produce different sounds depending on their frequency. The membrane in any speaker can be thought of as a simple harmonic oscillator with an intrinsic mass and restoring force. The heavier the membrane’s mass, the more inertia and sharper resonance it has because of its high Q. The most common way to reduce resonance and broaden bandwidth is to add damping, but this ultimately reduces the efficiency of the driver.

Graphene oxide-based biofoam uses sunlight to clean water

Oct 12, 2016

A team of scientists at Washington University has developed a technique for using sheets of graphene oxide to obtain drinkable water using sunlight; The technique involves heating dirty water to a boil - creating purified steam that can be collected and safely consumed.

Water treatment method using rGO image

The team has devised a method of heat localization using bilayered biofoam composed of bacterial nanocellulose (BNC) and reduced graphene oxide (RGO). The bilayer structure was created by growing Gluconacetobacter hansenii bacteria in the presence of graphene oxide flakes.