Graphene and batteries

Graphene, a sheet of carbon atoms bound together in a honeycomb lattice pattern, is hugely recognized as a “wonder material” due to the myriad of astonishing attributes it holds. It is a potent conductor of electrical and thermal energy, extremely lightweight chemically inert, and flexible with a large surface area. It is also considered eco-friendly and sustainable, with unlimited possibilities for numerous applications.

In the field of batteries, conventional battery electrode materials (and prospective ones) are significantly improved when enhanced with graphene. Graphene can make batteries that are light, durable and suitable for high capacity energy storage, as well as shorten charging times. It will extend the battery’s life-time, which is negatively linked to the amount of carbon that is coated on the material or added to electrodes to achieve conductivity, and graphene adds conductivity without requiring the amounts of carbon that are used in conventional batteries.

Graphene can improve such battery attributes as energy density and form in various ways. Li-ion batteries can be enhanced by introducing graphene to the battery’s anode and capitalizing on the material’s conductivity and large surface area traits to achieve morphological optimization and performance.

It has also been discovered that creating hybrid materials can also be useful for achieving battery enhancement. A hybrid of Vanadium Oxide (VO2) and graphene, for example, can be used on Li-ion cathodes and grant quick charge and discharge as well as large charge cycle durability. In this case, VO2 offers high energy capacity but poor electrical conductivity, which can be solved by using graphene as a sort of a structural “backbone” on which to attach VO2 - creating a hybrid material that has both heightened capacity and excellent conductivity.

Another example is LFP ( Lithium Iron Phosphate) batteries, that is a kind of rechargeable Li-ion battery. It has a lower energy density than other Li-ion batteries but a higher power density (an indicator of of the rate at which energy can be supplied by the battery). Enhancing LFP cathodes with graphene allowed the batteries to be lightweight, charge much faster than Li-ion batteries and have a greater capacity than conventional LFP batteries.



In addition to revolutionizing the battery market, combined use of graphene batteries and supercapacitors could yield amazing results, like the noted concept of improving the electric car’s driving range and efficiency.

Battery basics

Batteries serve as a mobile source of power, allowing electricity-operated devices to work without being directly plugged into an outlet. While many types of batteries exist, the basic concept by which they function remains similar: one or more electrochemical cells convert stored chemical energy into electrical energy. A battery is usually made of a metal or plastic casing, containing a positive terminal (an anode), a negative terminal (a cathode) and electrolytes that allow ions to move between them. A separator (a permeable polymeric membrane) creates a barrier between the anode and cathode to prevent electrical short circuits while also allowing the transport of ionic charge carriers that are needed to close the circuit during the passage of current. Finally, a collector is used to conduct the charge outside the battery, through the connected device.

Eneloop battery design

When the circuit between the two terminals is completed, the battery produces electricity through a series of reactions. The anode experiences an oxidation reaction in which two or more ions from the electrolyte combine with the anode to produce a compound, releasing electrons. At the same time, the cathode goes through a reduction reaction in which the cathode substance, ions and free electrons combine into compounds. Simply put, the anode reaction produces electrons while the reaction in the cathode absorbs them and from that process electricity is produced. The battery will continue to produce electricity until electrodes run out of necessary substance for creation of reactions.

Battery types and characteristics

Batteries are divided into two main types: primary and secondary. Primary batteries (disposable), are used once and rendered useless as the electrode materials in them irreversibly change during charging. Common examples are the zinc-carbon battery as well as the alkaline battery used in toys, flashlights and a multitude of portable devices. Secondary batteries (rechargeable), can be discharged and recharged multiple times as the original composition of the electrodes is able to regain functionality. Examples include lead-acid batteries used in vehicles and lithium-ion batteries used for portable electronics.

Batteries come in various shapes and sizes for countless different purposes. Different kinds of batteries display varied advantages and disadvantages. Nickel-Cadmium (NiCd) batteries are relatively low in energy density and are used where long life, high discharge rate and economical price are key. They can be found in video cameras and power tools, among other uses. NiCd batteries contain toxic metals and are environmentally unfriendly. Nickel-Metal hydride batteries have a higher energy density than NiCd ones, but also a shorter cycle-life. Applications include mobile phones and laptops. Lead-Acid batteries are heavy and play an important role in large power applications, where weight is not of the essence but economic price is. They are prevalent in uses like hospital equipment and emergency lighting.

Lithium-Ion (Li-ion) batteries are used where high-energy and minimal weight are important, but the technology is fragile and a protection circuit is required to assure safety. Applications include cell phones and various kinds of computers. Lithium Ion Polymer (Li-ion polymer) batteries are mostly found in mobile phones. They are lightweight and enjoy a slimmer form than that of Li-ion batteries. They are also usually safer and have longer lives. However, they seem to be less prevalent since Li-ion batteries are cheaper to manufacture and have higher energy density.

Batteries and supercapacitors

While there are certain types of batteries that are able to store a large amount of energy, they are very large, heavy and release energy slowly. Capacitors, on the other hand, are able to charge and discharge quickly but hold much less energy than a battery. The use of graphene in this area, though, presents exciting new possibilities for energy storage, with high charge and discharge rates and even economical affordability. Graphene-improved performance thereby blurs the conventional line of distinction between supercapacitors and batteries.

Li-Polymer battery vs Supercapacitor structure

Commercial Graphene-enhanced battery products

Graphene-based batteries have exciting potential and while they are not commercially available yet, R&D is intensive and will hopefully yield results in the future.

In November 2016, Huawei unveiled a new graphene-enhanced Li-Ion battery that can remain functional at higher temperature (60° degrees as opposed to the existing 50° limit) and offers a longer operation time - double than what can be achieved with previous batteries. To achieve this breakthrough, Huawei incorporated several new technologies - including an anti-decomposition additives in the electrolyte, chemically stabilized single crystal cathodes - and graphene to facilitate heat dissipation. Huawei says that the graphene reduces the battery's operating temperature by 5 degrees.

In June 2014, US based Vorbeck Materials announced the Vor-Power strap, a lightweight flexible power source that can be attached to any existing bag strap to enable a mobile charging station (via 2 USB and one micro USB ports). the product weighs 450 grams, provides 7,200 mAh and is probably the world’s first graphene-enhanced battery.

In May 2014, American company Angstron Materials rolled out several new graphene products. The products, said to become available roughly around the end of 2014, include a line of graphene-enhanced anode materials for Lithium-ion batteries. The battery materials were named “NANO GCA” and are supposed to result in a high capacity anode, capable of supporting hundreds of charge/discharge cycles by combining high capacity silicon with mechanically reinforcing and conductive graphene.

Graphene batteries market report

Developments are also made in the field of graphene batteries for electric vehicles. Henrik Fisker, who announced its new EV project that will sport a graphene-enhanced battery, unveiled in November 2016 what is hoped to be a competitor to Tesla. Called EMotion, the electric sports car will reportedly achieve a 161 mph (259 kmh) top speed and a 400-mile electric range.

Graphene Nanochem and Sync R&D’s October 2014 plan to co-develop graphene-enhanced Li-ion batteries for electric buses, under the Electric Bus 1 Malaysia program, is another example.

In August 2014, Tesla suggested the development of a "new battery technology" that will almost double the capacity for their Model S electric car. It is unofficial but reasonable to assume graphene involvement in this battery.

UK based Perpetuus Carbon Group and OXIS Energy agreed in June 2014 to co-develop graphene-based electrodes for Lithium-Sulphur batteries, which will offer improved energy density and possibly enable electric cars to drive a much longer distance on a single battery charge.

Another interesting venture, announced in September 2014 by US based Graphene 3D Labs, regards plans to print 3D graphene batteries. These graphene-based batteries can potentially outperform current commercial batteries as well as be tailored to various shapes and sizes.

Other prominent companies which declared intentions to develop and commercialize graphene-enhanced battery products are: Grafoid, SiNode together with AZ Electronic Materials, XG Sciences, Graphene Batteries together with CVD Equipment and CalBattery.

Further reading

Latest Graphene Batteries news

Graphene-Info's Batteries, Supercapacitors, Graphene Oxide, Lighting, Displays and Graphene Investments Market Reports updated to October 2018

Today we published new versions of all our graphene market reports. Graphene-Info provides comprehensive niche graphene market reports, and our reports cover everything you need to know about these niche markets. The reports are now updated to October 2018.

Graphene batteries market report 3D cover

The Graphene Batteries Market Report:

  • The advantages using graphene batteries
  • The different ways graphene can be used in batteries
  • Various types of graphene materials
  • What's on the market today
  • Detailed specifications of some graphene-enhanced anode material
  • Personal contact details into most graphene developers

The report package provides a good introduction to the graphene battery - present and future. It includes a list of all graphene companies involved with batteries and gives detailed specifications of some graphene-enhanced anode materials and contact details into most graphene developers. Read more here!

An interview with Graphmatech's CFO, Björn Lindh

Sweden-based Graphmatech develops and produces novel graphene-based nanocomposite materials, under the Aros Graphene brand. The company recently secured an investment from ABB and Walerud Ventures, and the company's CFO, Björn Lindh, was kind enough to answer a few questions we had to him.

Björn Lindh - Graphmatech

Q: Thank you for your time Björn. Can you give us a short introduction to Graphmatech's Aros Graphene materials, and how it differs from other graphene materials on the market?

Graphmatech has invented the novel material, Aros Graphene that keeps most of graphene's features, while making it easy to use in large industrial scales by preventing agglomeration, which is a key challenge for the use of graphene. Aros graphene is produced in powder form and can be used as additive, as coating or even in 3D-printing. The market introduction and launch of first products, filaments and thermal paste, will be introduced to the market in 2019.

Graphene for the Display and Lighting Industries

Abalonyx sees GO production cost reaching 22 Euro/Kg at high volumes

Norway-based Graphene Oxide developer Abalonyx says that there is a strong interest in graphene oxide (GO) solutions in the research community, across a wide range of applications. While first industrial adoption is "on the horizon", Abalonyx estimates that industry acceptance is strongly related to cost.

Graphene Oxide production cost estimate (Sep 2018, Abalonyx)

Abalonyx' current production cost is around €800 per Kg (dry weight basis) - since the Company's GO is currently used by researchers and early R&D efforts. Abalonyx estimates that as production volume goes up, the price of production could reach around 22 Euro / Kg - which will make GO applicable for areas such as concrete and asphalt. The projection is based on the company's own extrapolation of today's capacity and the effect of full-automation. The cost does not include waste handling (although Abalonyx believes that it will be able to handle that at no cost). Abalonyx is currently selling its GO at 1,300 - 4,000 per Kg depending on amount and grade (1.3 - 4 per gram).

The Graphene Flagship moves towards new stage

The Graphene Flagship was launched in 2013 with the mission to take graphene and related layered materials from academic laboratories to the market, revolutionize multiple industries and create economic growth and new jobs in Europe. Five years later, the Flagship consortium has reported that it successfully completed the Core1 phase and is progressing towards more applied phases. It is reportedly on its way to achieving its objective of developing the high potential of graphene and related 2D materials to the point of having a dramatic impact on multiple industries.

The Reviewing Panel thoroughly examined the results obtained in this Core1 phase and concluded that for many topics, there has been a clear transformation of the activities, moving from individual research projects to genuine collaboration towards larger goals – exactly what a Flagship project should aim for. Nearly all milestones and key performance indicators have been met, often exceeding expectations. There are numerous examples of significant scientific and/or technological achievements, with clear progress beyond the state of the art. The Work package on Photonics and Optoelectronics led by ICREA Prof. at ICFO Frank Koppens was recognized as one of the closest to being brought into industrial exploitation due to its significant potential for both scientific breakthrough and innovation.

A*STAR team uses graphene oxide to create a cathode for improved li-ion batteries

A*STAR researchers have found that incorporating organic materials into lithium ion batteries could lower their cost and make them more environmentally friendly. The team has developed an organic-based battery cathode that has significantly improved electrochemical performance compared to previous organic cathode materials. The new material is also robust, remaining stable over thousands of battery charge/discharge cycles.

An electron-deficient, rigid organic molecule called hexaazatrinaphthalene (HATN) was previously investigated as an organic cathode material for lithium ion batteries. However, its promising initial performance declined rapidly during use, because the molecule began to dissolve into the battery’s liquid electrolyte. A new cathode material, in which HATN was combined with graphene oxide in an attempt to prevent the organic material from dissolving, has now been developed by Yugen Zhang and his colleagues from the A*STAR Institute of Bioengineering and Nanotechnology.

XFNANO: Graphene and graphene-like materials since 2009 XFNANO: Graphene and graphene-like materials since 2009