Graphene batteries: Introduction and Market News
Graphene and batteries
Graphene, a sheet of carbon atoms bound together in a honeycomb lattice pattern, is hugely recognized as a wonder material due to the myriad of astonishing attributes it holds. It is a potent conductor of electrical and thermal energy, extremely lightweight chemically inert, and flexible with a large surface area. It is also considered eco-friendly and sustainable, with unlimited possibilities for numerous applications.
The advantages of graphene batteries
In the field of batteries, conventional battery electrode materials (and prospective ones) are significantly improved when enhanced with graphene. A graphene battery can be light, durable and suitable for high capacity energy storage, as well as shorten charging times. It will extend the battery's life, which is negatively linked to the amount of carbon that is coated on the material or added to electrodes to achieve conductivity, and graphene adds conductivity without requiring the amounts of carbon that are used in conventional batteries.
Graphene can improve such battery attributes as energy density and form in various ways. Li-ion batteries (and other types of rechargeable batteries) can be enhanced by introducing graphene to the battery's anode and capitalizing on the material's conductivity and large surface area traits to achieve morphological optimization and performance.
It has also been discovered that creating hybrid materials can also be useful for achieving battery enhancement. A hybrid of Vanadium Oxide (VO2) and graphene, for example, can be used on Li-ion cathodes and grant quick charge and discharge as well as large charge cycle durability. In this case, VO2 offers high energy capacity but poor electrical conductivity, which can be solved by using graphene as a sort of a structural backbone on which to attach VO2 - creating a hybrid material that has both heightened capacity and excellent conductivity.
Another example is LFP (Lithium Iron Phosphate) batteries, that is a kind of rechargeable Li-ion battery. It has a lower energy density than other Li-ion batteries but a higher power density (an indicator of of the rate at which energy can be supplied by the battery). Enhancing LFP cathodes with graphene allowed the batteries to be lightweight, charge much faster than Li-ion batteries and have a greater capacity than conventional LFP batteries.
In addition to revolutionizing the battery market, combined use of graphene batteries and graphene supercapacitors could yield amazing results, like the noted concept of improving the electric car's driving range and efficiency. While graphene batteries have not yet reached widespread commercialization, battery breakthroughs are being reported around the world.
Battery basics
Batteries serve as a mobile source of power, allowing electricity-operated devices to work without being directly plugged into an outlet. While many types of batteries exist, the basic concept by which they function remains similar: one or more electrochemical cells convert stored chemical energy into electrical energy. A battery is usually made of a metal or plastic casing, containing a positive terminal (an anode), a negative terminal (a cathode) and electrolytes that allow ions to move between them. A separator (a permeable polymeric membrane) creates a barrier between the anode and cathode to prevent electrical short circuits while also allowing the transport of ionic charge carriers that are needed to close the circuit during the passage of current. Finally, a collector is used to conduct the charge outside the battery, through the connected device.
When the circuit between the two terminals is completed, the battery produces electricity through a series of reactions. The anode experiences an oxidation reaction in which two or more ions from the electrolyte combine with the anode to produce a compound, releasing electrons. At the same time, the cathode goes through a reduction reaction in which the cathode substance, ions and free electrons combine into compounds. Simply put, the anode reaction produces electrons while the reaction in the cathode absorbs them and from that process electricity is produced. The battery will continue to produce electricity until electrodes run out of necessary substance for creation of reactions.
Battery types and characteristics
Batteries are divided into two main types: primary and secondary. Primary batteries (disposable), are used once and rendered useless as the electrode materials in them irreversibly change during charging. Common examples are the zinc-carbon battery as well as the alkaline battery used in toys, flashlights and a multitude of portable devices. Secondary batteries (rechargeable), can be discharged and recharged multiple times as the original composition of the electrodes is able to regain functionality. Examples include lead-acid batteries used in vehicles and lithium-ion batteries used for portable electronics.
Batteries come in various shapes and sizes for countless different purposes. Different kinds of batteries display varied advantages and disadvantages. Nickel-Cadmium (NiCd) batteries are relatively low in energy density and are used where long life, high discharge rate and economical price are key. They can be found in video cameras and power tools, among other uses. NiCd batteries contain toxic metals and are environmentally unfriendly. Nickel-Metal hydride batteries have a higher energy density than NiCd ones, but also a shorter cycle-life. Applications include mobile phones and laptops. Lead-Acid batteries are heavy and play an important role in large power applications, where weight is not of the essence but economic price is. They are prevalent in uses like hospital equipment and emergency lighting.
Lithium-Ion (Li-ion) batteries are used where high-energy and minimal weight are important, but the technology is fragile and a protection circuit is required to assure safety. Applications include cell phones and various kinds of computers. Lithium Ion Polymer (Li-ion polymer) batteries are mostly found in mobile phones. They are lightweight and enjoy a slimmer form than that of Li-ion batteries. They are also usually safer and have longer lives. However, they seem to be less prevalent since Li-ion batteries are cheaper to manufacture and have higher energy density.
Batteries and supercapacitors
While there are certain types of batteries that are able to store a large amount of energy, they are very large, heavy and release energy slowly. Capacitors, on the other hand, are able to charge and discharge quickly but hold much less energy than a battery. The use of graphene in this area, though, presents exciting new possibilities for energy storage, with high charge and discharge rates and even economical affordability. Graphene-improved performance thereby blurs the conventional line of distinction between supercapacitors and batteries.
Graphene batteries combine the advantages of both batteries and supercapacitors
Graphene-enhanced batteries are almost here
Graphene-based batteries have exciting potential and while they are not yet fully commercially available yet, R&D is intensive and will hopefully yield results in the future. Companies all over the world (including Samsung, Huawei, and others) are developing different types of graphene-enhanced batteries, some of which are now entering the market. The main applications are in electric vehicles and mobile devices.
Some batteries use graphene in peripheral ways - not in the battery chemistry. For example in 2016, Huawei unveiled a new graphene-enhanced Li-Ion battery that uses graphene to remain functional at higher temperature (60° degrees as opposed to the existing 50° limit) and offer a double the operation time. Graphene is used in this battery for better heat dissipation - it reduces battery's operating temperature by 5 degrees.
Further reading
- Introduction to graphene
- Graphene Supercapacitors
- How to invest in the graphene revolution
- The Graphene Handbook, our very own guide to the graphene market
- Graphene-Info's graphene batteries market report
- Graphene supercapacitors market report
Graphene-enhanced zinc-ion batteries as a safe, scalable, and high-performance energy storage solution
Zinc-ion batteries based on water-based electrolytes are inherently safe, environmentally friendly, and economically viable. They also mitigate fire risks and thermal runaway issues associated with their lithium-based counterparts, which makes them lucrative for grid-scale energy storage. Furthermore, zinc has high capacity, low cost, ample abundance, and low toxicity. Unfortunately, current collectors utilized in zinc-ion batteries, such as graphite foil, are difficult to scale up and suffer from relatively poor mechanical properties, limiting their industrial use.
Image credit: Dongguk University, Republic of Korea
In a new study, a team of researchers from the Republic of Korea, led by Associate Professor Geon-Hyoung An at the Department of Energy and Materials Engineering at Dongguk University, has proposed graphene-coated stainless steel foil as a novel alternative current collector.
New rGO/layered double hydroxide composites for improved lithium-ion batteries
Researchers from Korea's Kyungpook National University and Dongguk University recently addressed common challenges presented by current lithium-ion batteries, by engineering materials at the nanoscale. Their work focuses on a novel hybrid material designed to maximize the synergistic effects of its components.
Image credit: Chemical Engineering Journal
The composite is a hierarchical heterostructure that combines reduced graphene oxide (rGO) with nickel-iron layered double hydroxides (NiFe-LDH). This unique composite leverages the properties of its components: rGO provides a conductive network for electron transport, and the nickel-iron-oxide components enable fast charge storage through a pseudocapacitive mechanism. The key to this innovative design is the abundance of grain boundaries, which facilitate efficient charge storage.
HydroGraph and NEI Corporation launch new line of graphene dispersions
HydroGraph Clean Power, a manufacturer of high-purity graphene, and NEI Corporation, a leader in battery materials and testing services, announced the launch of NANOMYTE® FGA-1AD and NANOMYTE® FGA-1ND, a new line of advanced graphene dispersions.
These innovative dispersions, a result of the companies’ strategic collaboration, integrate seamlessly into existing electrode slurries, replacing or supplementing traditional conductive carbons to enhance electrode performance. The outcome is improved electrical conductivity, enabling the development of better electrodes and expanding possibilities for high-performance energy storage solutions.
Solidion Technology reaches milestone in lithium-sulfur battery
Solidion Technology has announced that its lithium-sulfur (Li-S) batteries have reached a cell energy density of 380 Wh/kg. Solidion's immediate next target is 450 Wh/kg. This exciting result was recently confirmed by a leading EV battery producer.
Solidion develops effective solutions capable of resolving the major technical issues that have thus far impeded full commercialization of Li-S barriers; these solutions include graphene/elastomer-protected lithium metal anode, 3D graphene-protected sulfur cathode, and quasi-solid or solid-state electrolyte.
GMG advances development of its Graphene Aluminium-Ion Battery, enters agreement with BIC
Graphene Manufacturing Group (GMG) has provided a progress update on the Graphene Aluminium-Ion Battery technology (“G+AI Battery”) being developed by GMG and the University of Queensland (“UQ”) under a Joint Development Agreement with Rio Tinto, one of the world’s largest metals and mining groups. GMG has announced that it has signed a service contract with the Battery Innovation Center of Indiana (“BIC”) in the United States of America to support the next phase of development of the Graphene Aluminium-Ion Battery.
BIC is a collaborative initiative designed to incorporate leadership from renowned universities, government agencies, and commercial enterprises. BIC is a public-private partnership and a not-for-profit organization focusing on the rapid development, testing and commercialization of safe, reliable and lightweight energy storage systems for defense and commercial customers. It is a unique organization that has been leading battery cell development for world leading battery companies for over 10 years and has carried out over 500 battery development projects.
Dreamfly Innovations raises $1.4 million seed funding for graphene-enhanced battery technology
India-based battery technology company, Dreamfly Innovations, has raised US$1.4 million in its seed funding round led by Avaana Capital, with participation from Sunicon Ventures and other existing investors.
Founded in 2022, Dreamfly is developing fire-resistant thermal batteries and sustainable, high-performance graphene-based solutions. The company focuses on high-performance batteries for drones, aviation, and aerospace, with clients including Tata Advanced Systems Ltd., Larsen & Toubro, General Aeronautics, and Neosky India Ltd.
Researchers develop graphene composite materials for efficient thermal management of Li-ion batteries
Researchers from China's Zhejiang University have developed a new thermal management system to prevent thermal runaway of Li-ion battery (LIB) cells, using hyperbolic graphene phase change composites. This addresses the safety concerns of LIB cells, mainly caused by thermal runaway. While phase change material systems already exist, the unresolved trade-off between high power and energy density greatly limits its practical applications.
The newly developed thermal management system relies on a composite material that consists of hyperbolic graphene framework and paraffin, and reportedly exhibits an impressive thermal conductivity of ∼30.75 W/mK at 12.5 wt% graphene loading and ultrahigh retention (90%) of latent heat, beyond that of most of the reported phase change composites.
HydroGraph Clean Power joins forces with Volfpack Energy and NEI Corporation
It was recently announced that HydroGraph Clean Power entered into two significant alliances in battery materials with Volfpack Energy and NEI Corporation.
The first agreement with NEI focuses on developing graphene-enhanced battery materials, featuring co-branded products and positioning NEI as a key channel partner for HydroGraph's graphene materials in the battery market. The second deal with Volfpack Energy focuses on the development of next-generation supercapacitors using HydroGraph's fractal graphene technology.
Graphene coating helps improve lithium-ion battery cathodes
Researchers at the California Institute of Technology (Caltech) have developed a method for coating lithium-ion battery cathodes with graphene, extending their life and performance. This recent effort may improve lithium-ion battery performance and reduce reliance on cobalt, an element frequently used in lithium-ion batteries that is difficult to source sustainably.
Image credit: Caltech
Caltech senior research scientist, David Boyd, has worked over the past decade to develop techniques for manufacturing graphene. In 2015, Boyd and colleagues discovered that high-quality graphene could be produced at room temperature. Prior to this, the production of graphene required extremely high temperatures, up to 1,000 degrees Celsius. After this breakthrough, they searched for new applications for graphene. Recently, Boyd teamed up with Will West, a technologist at Caltech's Jet Propulsion Laboratory (JPL), which Caltech manages for NASA. West specializes in electrochemistry and, in particular, in the development of improved battery technologies. Boyd and West set out to see if graphene could create an improved lithium-ion battery, which they have shown to be possible.
GMG launches a graphene solution for the lithium-ion battery industry
Graphene Manufacturing Group (GMG) has announced the launch of SUPER G®, a graphene slurry which can be used to enhance the performance of lithium-ion batteries. This product has, according to GMG, the potential to reshape the future of energy storage, offering battery manufacturers an innovative solution that optimizes efficiency, power, and longevity.

SUPER G® is a graphene slurry which has been developed by GMG over the last 3 years for GMG’s own Graphene Aluminum-Ion Battery which has unique properties of high electrical conductivity, low charge transfer resistance and high density compared to other carbon battery additives and materials used in lithium-ion batteries.
Pagination
- Page 1
- Next page