Article last updated on: Jul 12, 2020

Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb-like pattern. Graphene is considered to be the world's thinnest, strongest and most conductive material - of both electricity and heat. All of these properties are exciting researchers and businesses around the world - as graphene has the potential to revolutionize entire industries - in the fields of electricity, conductivity, energy generation, batteries, sensors and more.

Mechanical strength

Graphene is the world's strongest material, and can be used to enhance the strength of other materials. Dozens of researchers have demonstrated that adding even a trace amount of graphene to plastics, metals or other materials can make these materials much stronger - or lighter (as you can use a smaller amount of material to achieve the same strength).

applications of composites image

Such graphene-enhanced composite materials can find uses in aerospace, building materials, mobile devices, and many other applications.

Thermal applications

Graphene is the most heat conductive found to date. As graphene is also strong and light, it means that it is a great material for making heat-spreading solutions, such as heat sinks or heat dissipation films. This could be useful in both microelectronics (for example to make LED lighting more efficient and longer lasting) and also in larger applications - for example thermal foils for mobile devices. Huawei's latest smartphones, for example, have adopted graphene-based thermal films.

graphene-bulb-demonstration-image



Energy storage

Since graphene is the world's thinnest material, it also extremely high surface-area to volume ratio. This makes graphene a very promising material for use in batteries and supercapacitors. Graphene may enable batteries and supercapacitors (and even fuel-cells) that can store more energy - and charge faster, too.

Graphene battery advantages imageThe advantages of graphene batteries

Coatings ,sensors, electronics and more

Graphene has a lot of promise for additional applications: anti-corrosion coatings and paints, efficient and precise sensors, faster and efficient electronics, flexible displays, efficient solar panels, faster DNA sequencing, drug delivery, and more.

Graphene is such a great and basic building block that it seems that any industry can benefit from this new material. Time will tell where graphene will indeed make an impact - or whether other new materials will be more suitable.

The latest Graphene Application news:

First commercial contract for water filtration membranes enhanced with graphene oxide

UK's G2O Water Technologies has reported securing its first commercial contract for the enhancement of water filtration membranes with graphene oxide.

The Company explains that the advantages of using graphene oxide lie in the enhancement of membrane performance, as it mitigates the effects of fouling – one of the biggest challenges operators of membrane-based water filtration systems face. With a coating of graphene oxide, successfully developed and piloted by the company in the northwest of England in collaboration with Hydrasyst Limited, operators can improve operational efficiency, reduce energy consumption and decrease chemical usage. It is anticipated that this will extend the lifetime of the membranes, as well as significantly reduce the cost and environmental impact of water treatment.

Graphene-enhanced sports gear by Win&Win used at the Tokyo Olympics

Korean archer Kim Je-deok recently won two gold medals at the 2020 Summer Olympics in Tokyo, using a graphene-enhanced bow.

Graphene-enhanced sports gear at the Olympics image

The bow was the creation of Korean sports equipment manufacturer Win&Win. The Company's' WIAWIS brand of bows also includes aluminum bows, and the athletes reportedly chose between aluminum and graphene bows based on their preferences.

Researchers develop graphene aerosol gel inks for printing micro-supercapacitors

Researchers from Kansas State University, led by Suprem Das, assistant professor of industrial and manufacturing systems engineering, in collaboration with Christopher Sorensen, university distinguished professor of physics, have shown potential ways to manufacture graphene-based nano-inks for additive manufacturing of supercapacitors in the form of flexible and printable electronics.

The team’s work could be adapted to integrate supercapacitors to overcome the slow-charging processes of batteries. Furthermore, Das has been developing additive manufacturing of small supercapacitors — called micro-supercapacitors — so that one day they could be used for wafer-scale integration in silicon processing.

ZTE launches new Axon 30 smartphones with graphene-based cooling system

ZTE recently launched the Axon 30, which reportedly uses a graphene-based cooling system. To be exact, the phone is said to have a “triple ice cooling system” comprising a large VC cooling plate, high power thermal gel, and graphene copper-based composite material.

ZTE Axon30 with graphene cooling image

The Axon 30 is launching first in China, but ZTE says “the global version is coming soon.”

Mason Graphite and Thomas Swan to launch Black Swan Graphene

Mason Graphite has announced the launch of Black Swan Graphene Inc., and the execution of a Definitive Agreement pursuant to which Mason Graphite has agreed, through Black Swan Graphene, to purchase strategic assets related to a patented graphene processing technology from Thomas Swan, a leading UK-based specialty chemical company.

On closing of the joint-venture Transaction, Mason Graphite and Thomas Swan will own respectively 66.67% and 33.33% of Black Swan Graphene, which is expected to proceed to a going-public transaction in the coming months.