Article last updated on: Jan 23, 2019

Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb-like pattern. Graphene is considered to be the world's thinnest, strongest and most conductive material - to both electricity and heat. All this properties are exciting researchers and businesses around the world - as graphene has the potential the revolutionize entire industries - in the fields of electricity, conductivity, energy generation, batteries, sensors and more.

Mechanical strength

Graphene is the world's strongest material, and so can be used to enhance the strength of other materials. Dozens of researches have demonstrated that adding even a trade amount of graphene to plastics, metals or other materials can make these materials much stronger - or lighter (as you can use less amount of material to achieve the same strength).

applications of composites image

Such graphene-enhanced composite materials can find uses in aerospace, building materials, mobile devices, and many other applications.

Thermal applications

Graphene is the world's most conductive material to heat. As graphene is also strong and light, it means that it is a great material to make heat-spreading solutions, such as heat sinks. This could be useful in both microelectronics (for example to make LED lighting more efficient and longer lasting) and also in larger applications - for example thermal foils for mobile devices.

graphene-bulb-demonstration-image



Energy storage

Because graphene is the world's thinnest material, it is also the material with the highest surface-area to volume ratio. This makes graphene a very promising material to be used in batteries and supercapacitors. Graphene may enable devices that can store more energy - and charge faster, too. Graphene can also be used to enhance fuel-cells.

Coatings ,sensors, electronics and more

Graphene has a lot of other promising applications: anti-corrosion coatings and paints, efficient and precise sensors, faster and efficient electronics, flexible displays, efficient solar panels, faster DNA sequencing, drug delivery, and more.

Graphene is such a great and basic building block that it seems that any industry can benefit from this new material. Time will tell where graphene will indeed make an impact - or whether other new materials will be more suitable.

The latest Graphene Application news:

Graphene Flagship partners develop a graphene-titania photocatalyst that gets rid of NOx pollutants

Graphene Flagship partners the University of Bologna, Politecnico di Milano, CNR, NEST, Italcementi HeidelbergCement Group, the Israel Institute of Technology, Eindhoven University of Technology, and the University of Cambridge have developed a graphene-titania photocatalyst that degrades up to 70% more atmospheric nitrogen oxides (NOx) than standard titania nanoparticles in tests on real pollutants.

To address the problem of atmospheric pollution, researchers worldwide are on the hunt for new ways to remove pollutants from the atmosphere, and photocatalysts such as titania are a good way to do this. When titania is exposed to sunlight, it degrades nitrogen oxides – which are very harmful to human health – and volatile organic compounds present at the surface, oxidizing them into inert or harmless products.

Graphenea launches highly flat monolayer graphene on copper thin film

Graphenea has announced the launch of a new product – highly flat monolayer graphene. The graphene is grown by CVD on copper thin film on a 2” sapphire substrate. With extremely low roughness that is less than 4 nm, this new product is targeted at applications in photonics, high-performance electronics, magnetic memory, and freestanding membranes.

Graphenea's new flat monolayer graphene on copper thin film image

The product aims to meet wafer-scale integration requirements to build uniform graphene devices in a fashion compatible with current industrial fabrication methods. The flat graphene product is ready to be transferred by electrochemical delamination or dry methods since the sapphire substrate is robust enough to withstand mechanical damage, preventing tearing and wrinkling of the thin Cu sheet. The total wafer thickness is 430 micrometers. Full product information can be found in Graphenea's online store.

NanoEDGE: German-Israeli collaboration to develop wearable electronics for mental disorder diagnosis and functional restoration

The NanoEDGE BMBF-Project, coordinated by the Fraunhofer Institute for Biomedical Engineering IBMT, aims at the development of a graphene-based ink for inkjet printing and a scalable printing process as well as a resource-efficient process chain for the production of electrodes for direct skin contact.

Printed test electrodes in the NanoEDGE project imagePrinted test electrodes in the NanoEDGE project

The development of a graphene-based ink is based on a commercial graphene ink. Ink modification was necessary to make it printable. Ethanol is added to avoid bubbles and to decrease the surface tension of the ink. Carbon nanoparticles are added to improve abrasion resistance of printed structures. A surfactant is added to improve printability and to increase the conductivity and surface smoothness of printed structures.

Versarien enters commercial partnership with textiles company MAS Innovation

Versarien LogoAdvanced materials company Versarien recently shared that it has signed a commercial partnership agreement with textile-sector company MAS Innovation. The agreement followed a letter of intent between the parties, which set out their intent to enter into a formal commercial partnership.

The agreement specifies the terms under which the parties would secure commercial orders for garments developed using Versarien's proprietary graphene ink materials. It allowed both parties to finalize additional contractual terms with third party brands.

Archer Materials’ graphene ink formulations printed and tested with prototype device

Archer Materials (formerly Archer Exploration) has reported progressing its graphene-based biosensor technology development by building a first-phase prototype device to test the printing and performance of graphene inks.

The prototype biosensor technology by Archer Materials imageThe prototype biosensor technology built at the University of Adelaide ARC Graphene Hub

Graphene ink formulations produced from the inventory of Carbon Allotropes, a wholly-owned subsidiary of Archer, have reportedly been successfully printed and tested in a prototype device for biosensing.