Article last updated on: Jan 23, 2019

Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb-like pattern. Graphene is considered to be the world's thinnest, strongest and most conductive material - to both electricity and heat. All this properties are exciting researchers and businesses around the world - as graphene has the potential the revolutionize entire industries - in the fields of electricity, conductivity, energy generation, batteries, sensors and more.

Mechanical strength

Graphene is the world's strongest material, and so can be used to enhance the strength of other materials. Dozens of researches have demonstrated that adding even a trade amount of graphene to plastics, metals or other materials can make these materials much stronger - or lighter (as you can use less amount of material to achieve the same strength).

applications of composites image

Such graphene-enhanced composite materials can find uses in aerospace, building materials, mobile devices, and many other applications.

Thermal applications

Graphene is the world's most conductive material to heat. As graphene is also strong and light, it means that it is a great material to make heat-spreading solutions, such as heat sinks. This could be useful in both microelectronics (for example to make LED lighting more efficient and longer lasting) and also in larger applications - for example thermal foils for mobile devices.

graphene-bulb-demonstration-image



Energy storage

Because graphene is the world's thinnest material, it is also the material with the highest surface-area to volume ratio. This makes graphene a very promising material to be used in batteries and supercapacitors. Graphene may enable devices that can store more energy - and charge faster, too. Graphene can also be used to enhance fuel-cells.

Coatings ,sensors, electronics and more

Graphene has a lot of other promising applications: anti-corrosion coatings and paints, efficient and precise sensors, faster and efficient electronics, flexible displays, efficient solar panels, faster DNA sequencing, drug delivery, and more.

Graphene is such a great and basic building block that it seems that any industry can benefit from this new material. Time will tell where graphene will indeed make an impact - or whether other new materials will be more suitable.

The latest Graphene Application news:

Graphene and borophene integrated into 2D heterostructures

Researchers from Northwestern University have created 2D heterostructures from graphene and borophene, taking an important step toward creating intergrated circuits from these nanomaterials.

Graphene and borophene successfully ''stitched'' together image Atomic-resolution scanning tunneling microscopy image of a borophene-graphene lateral heterostructure with an overlaid schematic of interfacial boron-carbon bonding. image by Northwestern U

"If you were to crack open an integrated circuit inside a smartphone, you'd see many different materials integrated together," said Mark Hersam, Walter P. Murphy Professor of Materials Science and Engineering, who led the research. "However, we've reached the limits of many of those traditional materials. By integrating nanomaterials like borophene and graphene together, we are opening up new possibilities in nanoelectronics."

GrapheCase creates prototype for graphene-based smart suitcase made from recycled plastic

UK-based start-up company, GraphCase, has developed a patent-pending technology to create a composite polymer using graphene, which is made from 100% recycled plastics. A prototype for a graphene-based smart suitcase made from this material has been developed in collaboration with The University of Manchester. The world first graphene suitcase is said to be 60% stronger, 20% lighter and has a lifetime warranty. The material used can also be recycled multiple times whilst maintaining its performance.

The overwhelming excess of plastic, detrimental to the environment, can be addressed by recycling, However, one of the barriers for using recycled plastic includes degradation and thermal aging of the plastic as well as mixing low-grade materials into the batch, which results in poor performance properties and lower reusability. The use of one 20" GraphCase cabin luggage could potentially reduce 6 kg CO2 emissions into the environment.

Rice team designs graphene-based air filter that grabs and zaps pathogens

Rice University team under chemist James Tour has transformed their laser-induced graphene (LIG) into self-sterilizing filters that grab pathogens out of the air and kill them with small pulses of electricity. This may be of special interest to hospitals, where according to the Centers for Disease Control and Prevention, patients have a 1-in-31 chance of acquiring a potentially antibiotic-resistant infection during hospitalization.

Rice team creates self-sterilizing LIG air filters that show potential for use in hospitals image

The device reportedly captures bacteria, fungi, spores, prions, endotoxins and other biological contaminants carried by droplets, aerosols and particulate matter.

Smart insole with graphene sensors may become a lifesaving technology for diabetic patients

Stevens Institute of Technology (SIT), a private, coeducational research university located in New Jersey, United States, has signed an exclusive licensing agreement with Bonbouton for the right to use and further develop a graphene sensing system that detects early signs of foot ulcers before they form so people living with diabetes can access preventative healthcare and confidently manage their health.

Smart insole with a graphene sensing system that can help detect early signs of foot ulcers before they form image

The smart insole can be inserted into a sneaker or dress shoe to passively monitor the foot health of a person living with diabetes. The data are then sent to a companion app which can be accessed by the patient and shared with their healthcare provider, who can determine if intervention or treatment is needed.

AGM and Infinite Composites develop graphene composite material for space exploration

Applied Graphene Materials logoApplied Graphene Materials (AGM) and pressure vessel manufacturer Infinite Composites Technologies have collaborated to develop a composite material for space exploration.

The partnership saw the use of AGM’s graphene technology in two resin systems for cryogenic pressure tanks. These vessels are currently being explored by Nasa for use in several spaceflight missions, as well as International Space Station Experiments (MISSE), Artemis and Lunar Gateway programmes.