Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb-like pattern. Graphene is considered to be the world's thinnest, strongest and most conductive material - to both electricity and heat. All this properties are exciting researchers and businesses around the world - as graphene has the potential the revolutionize entire industries - in the fields of electricity, conductivity, energy generation, batteries, sensors and more.

Mechanical strength

Graphene is the world's strongest material, and so can be used to enhance the strength of other materials. Dozens of researches have demonstrated that adding even a trade amount of graphene to plastics, metals or other materials can make these materials much stronger - or lighter (as you can use less amount of material to achieve the same strength).

applications of composites image

Such graphene-enhanced composite materials can find uses in aerospace, building materials, mobile devices, and many other applications.

Thermal applications

Graphene is the world's most conductive material to heat. As graphene is also strong and light, it means that it is a great material to make heat-spreading solutions, such as heat sinks. This could be useful in both microelectronics (for example to make LED lighting more efficient and longer lasting) and also in larger applications - for example thermal foils for mobile devices.

graphene-bulb-demonstration-image

Energy storage

Because graphene is the world's thinnest material, it is also the material with the highest surface-area to volume ratio. This makes graphene a very promising material to be used in batteries and supercapacitors. Graphene may enable devices that can store more energy - and charge faster, too. Graphene can also be used to enhance fuel-cells.

Coatings ,sensors, electronics and more

Graphene has a lot of other promising applications: anti-corrosion coatings and paints, efficient and precise sensors, faster and efficient electronics, flexible displays, efficient solar panels, faster DNA sequencing, drug delivery, and more.

Graphene is such a great and basic building block that it seems that any industry can benefit from this new material. Time will tell where graphene will indeed make an impact - or whether other new materials will be more suitable.

Latest graphene application news

Graphene joins forces with gold to enable improved neural probes

Apr 20, 2017

Researchers from the Daegu Gyeongbuk Institute of Science & Technology in Korea have used graphene to develop neural probes that are small, flexible and read brain signals clearly.

The probe consists of an electrode, which records the brain signal. The signal travels down an interconnection line to a connector, which transfers the signal to machines measuring and analyzing the signals. The electrode starts with a thin gold base. Attached to the base are tiny zinc oxide nanowires, which are coated in a thin layer of gold, and then a layer of conducting polymer called PEDOT. These combined materials increase the probe's effective surface area, conducting properties, and strength of the electrode, while still maintaining flexibility and compatibility with soft tissue.

HKG plans to manufacture cars with graphene-enhanced batteries

Apr 20, 2017

China's Hybrid Kinetic Group, a producer of lithium-ion batteries and hybrid vehicles, announced its aim to build car assemblies in three to five locations across China, with an initial production capacity of 300,000 units within three years, eventually expanding the capacity to 1 million units. While not many details were given, it was said that some of the models are to be powered by a 30 kilowatt battery using graphene with a 60 kw micro turbine power generator that theoretically can extend the battery’s range to 1,000 kilometers on each charge.

HKG's car with graphene battery imageThe H600 prototype by HKG

HKG is using US technology, and has commissioned designs by the Mahindra Group’s design studio Pininfarina. The company stated that “expansion of the production will depend on the market reactions”. and that “negotiations with car part makers are going on smoothly.”

Graphene Handbook

MIT team uses graphene as a "copy machine" for semiconductors

Apr 20, 2017

Researchers at MIT have developed a technique that uses graphene as a kind of “copy machine”, to transfer intricate crystalline patterns from an underlying semiconductor wafer to a top layer of identical material.

Graphene as intermediary for semiconductors image

As a great deal of money is spent in the semiconductor industry on wafers that serve as the substrates for microelectronics components, which can be turned into transistors, light-emitting diodes etc., this method may help reduce the cost of wafer technology and enable devices made from more exotic, higher-performing semiconductor materials than conventional silicon.

Non-flammable graphene oxide membrane developed for safe mass production

Apr 19, 2017

Researchers at the University of Arkansas have demonstrated a simple and scalable method for turning graphene oxide into a non-flammable and paper-like graphene membrane that can be used in large-scale production. This tackles the issue of high flammability, which has, according to the team, been an obstacle to further development and commercialization.

Using metal ions with three or more positive charges, the researchers bonded graphene-oxide flakes into a transparent membrane. This new form of material is flexible, nontoxic and mechanically strong, in addition to being non-flammable. Further testing of the material suggested that crosslinking, or bonding, using transition metals and rare-earth metals, caused the graphene oxide to possess new semiconducting, magnetic and optical properties.

Graphene-based transistors show promise for optical technologies

Apr 18, 2017

Researchers at Purdue University, the University of Michigan and Pennsylvania State University have combined graphene with a (comparatively much larger) silicon carbide substrate, creating graphene field-effect transistors which can be activated by light. This may lead to the development of highly sensitive graphene-based optical devices, an advance that could bring applications from imaging and displays to sensors and high-speed communications.

GFETs show promise for optical technologies image

A typical problem of graphene-based photodetectors is that they have only a small area that is sensitive to light, limiting their performance. “In typical graphene-based photodetectors demonstrated so far, the photoresponse only comes from specific locations near graphene over an area much smaller than the device size,” the team said. “However, for many optoelectronic device applications, it is desirable to obtain photoresponse and positional sensitivity over a much larger area”. The researchers tackled exactly this in their new work.