Article last updated on: Dec 09, 2019

Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb-like pattern. Graphene is considered to be the world's thinnest, strongest and most conductive material - to both electricity and heat. All this properties are exciting researchers and businesses around the world - as graphene has the potential the revolutionize entire industries - in the fields of electricity, conductivity, energy generation, batteries, sensors and more.

Mechanical strength

Graphene is the world's strongest material, and so can be used to enhance the strength of other materials. Dozens of researches have demonstrated that adding even a trade amount of graphene to plastics, metals or other materials can make these materials much stronger - or lighter (as you can use less amount of material to achieve the same strength).

applications of composites image

Such graphene-enhanced composite materials can find uses in aerospace, building materials, mobile devices, and many other applications.

Thermal applications

Graphene is the world's most conductive material to heat. As graphene is also strong and light, it means that it is a great material to make heat-spreading solutions, such as heat sinks or films used to dissipate heat. This could be useful in both microelectronics (for example to make LED lighting more efficient and longer lasting) and also in larger applications - for example thermal foils for mobile devices. Huawei's latest smartphones, for example, adopt graphene-based thermal films.

graphene-bulb-demonstration-image



Energy storage

Because graphene is the world's thinnest material, it is also the material with the highest surface-area to volume ratio. This makes graphene a very promising material to be used in batteries and supercapacitors. Graphene may enable batteries and supercapacitors (and even fuel-cells) that can store more energy - and charge faster, too.

Graphene battery advantages imageThe advantages of graphene batteries

Coatings ,sensors, electronics and more

Graphene has a lot of other promising applications: anti-corrosion coatings and paints, efficient and precise sensors, faster and efficient electronics, flexible displays, efficient solar panels, faster DNA sequencing, drug delivery, and more.

Graphene is such a great and basic building block that it seems that any industry can benefit from this new material. Time will tell where graphene will indeed make an impact - or whether other new materials will be more suitable.

The latest Graphene Application news:

Researchers develop a novel graphene-vanadium flexible hybrid battery/supercapacitor

Researchers at the Graphene Integrated Functional Technologies (GIFT) Research Cluster at Queen’s University in Canada have developed a novel graphene-based flexible hybrid batterysupercapacitor device.

Structure of the hybrid battery/supercapacitor image

The device consists of high specific surface area electrodes paired with an electrolyte, which contains a redox species that can exist in more than two oxidation states. The two initially equal half-cells of the device consist of a reduced graphene oxide hydrogel which encapsulates vanadium ions, synthesized with a single-step method.

Graphene-enhanced color-changing flexible photonic crystals could be the key to next-gen smart sensors

An international team of scientists, led by the Universities of Surrey and Sussex, has developed graphene-enhanced color-changing, flexible photonic crystals that could be used to develop sensors that warn when an earthquake might strike next.

Optical images and internal microstructure of graphene-enhanced colloidal crystals imageOptical images and internal microstructure of colloidal crystals enhanced with graphene. Image from Advanced Functional Materials

The wearable, robust and low-cost sensors can respond sensitively to light, temperature, strain or other physical and chemical stimuli making them an extremely promising option for cost-effective smart visual sensing applications in a range of sectors including healthcare and food safety.

Nanotech Energy concludes $27.5 Million funding round and announces non-flammable battery ready for commercialization

Los Angeles-based NanotNanotech Energy logo imageech Energy has announced the official close of its Series C round of funding. This round was expected to close at $25 million, yet included an option to allow for an additional $2.5 million for a total of $27.5 million invested.

“This round of funding – with such high-level and committed investors – validates the need the international market has for our proprietary battery technology,” said Dr. Jack Kavanaugh, chairman and CEO of Nanotech Energy Inc. “We are confident that we have a one-of-a-kind, industry-changing product that will impact the technologies and bottom lines of multiple end-user markets. This round of funding allows us to dramatically expand our production of graphene batteries, as well as our production of conductive epoxies, conductive inks and electromagnetic interference shielding spray paints and films. This will also facilitate our efforts to further increase our large-scale manufacturing of high-quality graphene that we provide for use in downstream applications.”

Graphene-enhanced carbon fiber could lead to affordable, stronger aerospace and automotive materials

A research team, which includes researchers from Penn State, the University of Virginia and Oak Ridge National Laboratory, in collaboration with industry partners Solvay and Oshkosh, has found that adding small amounts of graphene to the production process of carbon fibers - which are typically expensive to make - both reduces the production cost and strengthens the fibers and so could one day lead to using these lightweight, high-strength materials to improve safety and reduce the cost of producing planes and cars.

For decades, carbon fibers have been a mainstay of airplane production. If created in the right way, these long strands of carbon-based atoms are lightweight, stiff and strong. "Even though carbon fibers have really nice features, they would make a car far more expensive" with the way carbon fibers are manufactured now, said Adri van Duin, professor of mechanical and chemical engineering, Penn State. "If you can get these properties easier to manufacture then you can make cars significantly lighter, lower the cost of them and make them safer."

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!