Article last updated on: Jul 12, 2020

Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb-like pattern. Graphene is considered to be the world's thinnest, strongest and most conductive material - of both electricity and heat. All of these properties are exciting researchers and businesses around the world - as graphene has the potential to revolutionize entire industries - in the fields of electricity, conductivity, energy generation, batteries, sensors and more.

Mechanical strength

Graphene is the world's strongest material, and can be used to enhance the strength of other materials. Dozens of researchers have demonstrated that adding even a trace amount of graphene to plastics, metals or other materials can make these materials much stronger - or lighter (as you can use a smaller amount of material to achieve the same strength).

applications of composites image

Such graphene-enhanced composite materials can find uses in aerospace, building materials, mobile devices, and many other applications.

Thermal applications

Graphene is the most heat conductive found to date. As graphene is also strong and light, it means that it is a great material for making heat-spreading solutions, such as heat sinks or heat dissipation films. This could be useful in both microelectronics (for example to make LED lighting more efficient and longer lasting) and also in larger applications - for example thermal foils for mobile devices. Huawei's latest smartphones, for example, have adopted graphene-based thermal films.

graphene-bulb-demonstration-image



Energy storage

Since graphene is the world's thinnest material, it also extremely high surface-area to volume ratio. This makes graphene a very promising material for use in batteries and supercapacitors. Graphene may enable batteries and supercapacitors (and even fuel-cells) that can store more energy - and charge faster, too.

Graphene battery advantages imageThe advantages of graphene batteries

Coatings ,sensors, electronics and more

Graphene has a lot of promise for additional applications: anti-corrosion coatings and paints, efficient and precise sensors, faster and efficient electronics, flexible displays, efficient solar panels, faster DNA sequencing, drug delivery, and more.

Graphene is such a great and basic building block that it seems that any industry can benefit from this new material. Time will tell where graphene will indeed make an impact - or whether other new materials will be more suitable.

The latest Graphene Application news:

Graphene e-tattoo allows for continuous cuffless monitoring of blood pressure

Researchers at The University of Texas at Austin and Texas A&M University have developed a graphene-based electronic tattoo that can be worn on the wrist for hours and deliver continuous blood pressure measurements at an accuracy level exceeding nearly all available options on the market today. This could signify an alternative for the currently used cuff-based devices that constrict around the arm to give a reading, as well as improve accuracy levels.

Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos image

The wearable is based on electrical bioimpedance and leverages atomically thin, self-adhesive, lightweight and unobtrusive graphene electronic tattoos as human bioelectronic interfaces. The graphene electronic tattoos are used to monitor arterial BP for >300 min, a period tenfold longer than reported in previous studies.

Researchers create graphene-metal hybrid device for ultrafast optical modulation

Scientists at Arizona State University (ASU) have developed a graphene-metal hybrid material that can help achieve ultrafast optical modulation. The work represents the world’s first demonstration of ultrafast optical modulation at mid-infrared wavelengths using the graphene-metal hybrid material.

The group’s design could enable new or improved applications in satellite communications and ultrafast molecular spectroscopy to study chemicals and molecules and advance biomedical diagnostics, remote sensing and astronomical applications — for example, in research being conducted on-site on the moon or Mars.

GMG commissions G+AI pouch cell equipment and manufactures the first pouch cell format batteries

Graphene Manufacturing Group (GMG) has announced that it has commissioned its graphene aluminium-ion batteries in pouch cell format and that the first G+Al battery pouch cells have been manufactured.

With the addition of the pouch cell equipment to the existing pilot production and testing plant, GMG has made the Battery Development Centre operational, to enable the manufacturing of this technology for a wide variety of applications.

Graphenea launches $99 miniGFET fully-packaged devices

Graphenea launched two new products out of its Graphene Foundry, which they call mGFET or miniGFET. This is Graphenea's highest value-chain products, which are manufactured and packaged in chip carriers, and can be used together with the freshly released Graphenea Card for seamless sensor development.

Graphenea miniGFET photo

The mGFET is available from $99, and as it is a fully-package device, it is ready to be integrated into standard electronics. Order volume can range from a few devices for early prototyping, to JEDEC trays with hundreds of devices which are compatible with automated pick & place routines.

Researchers create improved wigs using graphene oxide

Researchers from China's Donghua University have developed a new way to make wigs more durable and longer lasting - using graphene oxide.

Hairpieces can be made of real human strands or synthetic materials, but either way, washing, UV exposure from the sun and repeated styling can cause these products to become dry and brittle. To extend the life of wigs, researchers have spray-coated a layer of graphene oxide on them, whereas other teams have immersed wigs in a keratin/halloysite nanocomposite. Since it's difficult to cover an entire hairpiece with these methods, the team wanted to see if a nanocomposite applied with a tried-and-true approach for coating surfaces with ultrathin films - known as the Langmuir-Blodgett (LB) technique - could improve coverage and increase durability.