Article last updated on: Dec 09, 2019

Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb-like pattern. Graphene is considered to be the world's thinnest, strongest and most conductive material - to both electricity and heat. All this properties are exciting researchers and businesses around the world - as graphene has the potential the revolutionize entire industries - in the fields of electricity, conductivity, energy generation, batteries, sensors and more.

Mechanical strength

Graphene is the world's strongest material, and so can be used to enhance the strength of other materials. Dozens of researches have demonstrated that adding even a trade amount of graphene to plastics, metals or other materials can make these materials much stronger - or lighter (as you can use less amount of material to achieve the same strength).

applications of composites image

Such graphene-enhanced composite materials can find uses in aerospace, building materials, mobile devices, and many other applications.

Thermal applications

Graphene is the world's most conductive material to heat. As graphene is also strong and light, it means that it is a great material to make heat-spreading solutions, such as heat sinks or films used to dissipate heat. This could be useful in both microelectronics (for example to make LED lighting more efficient and longer lasting) and also in larger applications - for example thermal foils for mobile devices. Huawei's latest smartphones, for example, adopt graphene-based thermal films.

graphene-bulb-demonstration-image



Energy storage

Because graphene is the world's thinnest material, it is also the material with the highest surface-area to volume ratio. This makes graphene a very promising material to be used in batteries and supercapacitors. Graphene may enable batteries and supercapacitors (and even fuel-cells) that can store more energy - and charge faster, too.

Graphene battery advantages imageThe advantages of graphene batteries

Coatings ,sensors, electronics and more

Graphene has a lot of other promising applications: anti-corrosion coatings and paints, efficient and precise sensors, faster and efficient electronics, flexible displays, efficient solar panels, faster DNA sequencing, drug delivery, and more.

Graphene is such a great and basic building block that it seems that any industry can benefit from this new material. Time will tell where graphene will indeed make an impact - or whether other new materials will be more suitable.

The latest Graphene Application news:

New graphene-enhanced products raise old questions

When speaking of graphene in terms of commercialization, the general impression is that "a killer application has not yet been found". While this is not a false concept, it does not do justice with the now-budding graphene world. It can easily be stated that many graphene applications are being developed. This has been true for years, but various commercial products are starting to pop up, hopefully heralding the beginning of a more steady stream of commercialization.

Huawei Mate P30 Pro photo

Among these applications, one can point to cooling technology like Cryorig's CPU cooling system or Huawei's Mate 30 X smartphone, which sports a graphene film cooling technology. Various footwear and sports equipment products have also been launched, along with more technical products like oil additives and coatings. The list goes on and on, and there are even graphene-enhanced sanitary napkins on the market!

Graphene exhibits strange ‘melting’ behavior

Physicists from the Moscow Institute of Physics and Technology and the Institute for High Pressure Physics of the Russian Academy of Sciences have set out to refine the melting curve of graphite using computer modeling, and made interesting observations on graphene's melting properties.

The team'a results show that the liquid carbon structure undergoes changes above the melting curve of graphene. The researchers explain that no graphene melting experiments have been conducted. Previously, computer models predicted the melting point of graphene at 4,500 or 4,900 K. Two-dimensional carbon was therefore considered to have the highest melting point in the world.

Indian team develops graphene-based technology for prevention of drunk driving

In April 2018, researchers at the India-based Uttarakhand Residential University, RI Instruments and Innovationin developed a graphene-based technology to prevent vehicles from operating if the driver is drunk. Now, the same team produced a prototype that will be based on graphene generated from waste products and wild grasses as one of the components.

Graphene has an important role in the device as graphene-coated electrodes can catalyze the process of oxidation of ethyl alcohol into acetic acid. The concentration of alcohol will automatically disconnect the device, the team explained. The driver, while at the driving seat, has to blow the graphene sensor on the device to start the vehicle. This will immediately activate the sensor that will analyze and estimate the liquor content present in the blood of the driver.

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!