What is graphene?

Graphene is a material made of carbon atoms that are bonded together in a repeating pattern of hexagons. Graphene is so thin that it is considered two dimensional. Graphene's flat honeycomb pattern gives it many extraordinary characteristics, such as being the strongest material in the world, as well as one of the lightest, most conductive and transparent. Graphene has endless potential applications, in almost every industry (like electronics, medicine, aviation and much more).

An ideal graphene sheet image

The single layers of carbon atoms provide the basis for many other materials. Graphite, like the substance found in pencil lead, is formed by stacked graphene. Carbon nanotubes are made of rolled graphene and are used in many emerging applications from sports gear to biomedicine.

What is graphene oxide?

As graphene is expensive and relatively hard to produce, great efforts are made to find effective yet inexpensive ways to make and use graphene derivatives or related materials. Graphene oxide (GO) is one of those materials - it is a single-atomic layered material, made by the powerful oxidation of graphite, which is cheap and abundant. Graphene oxide is an oxidized form of graphene, laced with oxygen-containing groups. It is considered easy to process since it is dispersible in water (and other solvents), and it can even be used to make graphene. Graphene oxide is not a good conductor, but processes exist to augment its properties. It is commonly sold in powder form, dispersed, or as a coating on substrates.

Graphene Oxide structure

Graphene oxide is synthesized using four basic methods: Staudenmaier, Hofmann, Brodie and Hummers. Many variations of these methods exist, with improvements constantly being explored to achieve better results and cheaper processes. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the graphene oxide.

Graphene oxide uses

Graphene Oxide films can be deposited on essentially any substrate, and later converted into a conductor. This is why GO is especially fit for use in the production of transparent conductive films, like the ones used for flexible electronics, solar cells, chemical sensors and more. GO is even studied as a tin-oxide (ITO) replacement in batteries and touch screens.

Graphene Oxide has a high surface area, and so it can be fit for use as electrode material for batteries, capacitors and solar cells. Graphene Oxide is cheaper and easier to manufacture than graphene, and so may enter mass production and use sooner.

GO can easily be mixed with different polymers and other materials, and enhance properties of composite materials like tensile strength, elasticity, conductivity and more. In solid form, Graphene Oxide flakes attach one to another to form thin and stable flat structures that can be folded, wrinkled, and stretched. Such Graphene Oxide structures can be used for applications like hydrogen storage, ion conductors and nanofiltration membranes.

Graphene oxide is fluorescent, which makes it especially appropriate for various medical applications. bio-sensing and disease detection, drug-carriers and antibacterial materials are just some of the possibilities GO holds for the biomedical field.

Buy Graphene Oxide

Graphene oxide is relatively affordable and easy to find, with many companies that sell it. It does, however, get confusing since different companies offer products that vary in quality, price, form and more - making the choice of a specific product challenging. If you are interested in buying GO, contact Graphene-Info for advisement on the right GO for your exact needs!

Further reading

Latest Graphene Batteries news

Research team examines graphene's effects on the lungs

Researchers from Empa and the Adolphe Merkle Institute (AMI) in Fribourg have conducted studies on a 3D lung model to examine the behavior of graphene and graphene-like materials once they have been inhaled.

AMI lung model imageThe lung model at Adolphe Merkle Institute (AMI)

Thanks to the 3-D lung model, the researchers have succeeded in simulating the actual conditions at the blood-air barrier and the impact of graphene on the lung tissue as realistically as possible – without any tests on animals or humans. It is a cell model representing the lung alveoli. Conventional in vitro tests work with cell cultures from just one cell type – the newly established lung model, on the other hand, bears three different cell types, which simulate the conditions inside the lung, namely alveolar epithelial cells and two kinds of immune cells – macrophages and dendritic cells.

Zenyatta to collaborate with German Aerospace Center on graphene composites

Zenyatta Ventures has announced that it will be commencing a new research collaboration with the University of British Columbia (UBC)-Okanagan Campus and the Deutsches Zentrum für Luft- und Raumfahrt (“DLR”, the German Aerospace Center) to investigate the potential use of Albany Graphite for graphene and graphene oxide in new composite materials.

Dr. Lukas Bichler, who will be leading the composite development project, said: “UBC researchers have established a partnership with DLR, which seeks to provide unique educational and research opportunities for future engineers. Also, the partners bring together Canadian and European industry partners and allow effective technology transfer and rapid innovation”.

Graphene for the Display and Lighting Industries

Graphene-Info's Batteries, Supercapacitors, Graphene Oxide, Lighting, Displays and Graphene Investments Market Reports updated to October 2018

Today we published new versions of all our graphene market reports. Graphene-Info provides comprehensive niche graphene market reports, and our reports cover everything you need to know about these niche markets. The reports are now updated to October 2018.

Graphene batteries market report 3D cover

The Graphene Batteries Market Report:

  • The advantages using graphene batteries
  • The different ways graphene can be used in batteries
  • Various types of graphene materials
  • What's on the market today
  • Detailed specifications of some graphene-enhanced anode material
  • Personal contact details into most graphene developers

The report package provides a good introduction to the graphene battery - present and future. It includes a list of all graphene companies involved with batteries and gives detailed specifications of some graphene-enhanced anode materials and contact details into most graphene developers. Read more here!

Ionic Industries and Clean TeQ form a JV focused on graphene-based water treatment

Ionic Industries logoClean TeQ and Ionic Industries have formed a Joint Venture to progress the commercialization of graphene-based water treatment technologies.

The Companies stated that move follows the last 18 months in which Clean TeQ and Ionic have undertaken an extensive program of work together with Monash University to develop, manufacture and apply graphene oxide membranes for water filtration applications.

Abalonyx sees GO production cost reaching 22 Euro/Kg at high volumes

Norway-based Graphene Oxide developer Abalonyx says that there is a strong interest in graphene oxide (GO) solutions in the research community, across a wide range of applications. While first industrial adoption is "on the horizon", Abalonyx estimates that industry acceptance is strongly related to cost.

Graphene Oxide production cost estimate (Sep 2018, Abalonyx)

Abalonyx' current production cost is around €800 per Kg (dry weight basis) - since the Company's GO is currently used by researchers and early R&D efforts. Abalonyx estimates that as production volume goes up, the price of production could reach around 22 Euro / Kg - which will make GO applicable for areas such as concrete and asphalt. The projection is based on the company's own extrapolation of today's capacity and the effect of full-automation. The cost does not include waste handling (although Abalonyx believes that it will be able to handle that at no cost). Abalonyx is currently selling its GO at 1,300 - 4,000 per Kg depending on amount and grade (1.3 - 4 per gram).

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!