Article last updated on: Jan 29, 2019

What is graphene?

Graphene is a material made of carbon atoms that are bonded together in a repeating pattern of hexagons. Graphene is so thin that it is considered two dimensional. Graphene's flat honeycomb pattern gives it many extraordinary characteristics, such as being the strongest material in the world, as well as one of the lightest, most conductive and transparent. Graphene has endless potential applications, in almost every industry (like electronics, medicine, aviation and much more).

An ideal graphene sheet image

The single layers of carbon atoms provide the basis for many other materials. Graphite, like the substance found in pencil lead, is formed by stacked graphene. Carbon nanotubes are made of rolled graphene and are used in many emerging applications from sports gear to biomedicine.

What is graphene oxide?

As graphene is expensive and relatively hard to produce, great efforts are made to find effective yet inexpensive ways to make and use graphene derivatives or related materials. Graphene oxide (GO) is one of those materials - it is a single-atomic layered material, made by the powerful oxidation of graphite, which is cheap and abundant. Graphene oxide is an oxidized form of graphene, laced with oxygen-containing groups. It is considered easy to process since it is dispersible in water (and other solvents), and it can even be used to make graphene. Graphene oxide is not a good conductor, but processes exist to augment its properties. It is commonly sold in powder form, dispersed, or as a coating on substrates.

Graphene Oxide structure

Graphene oxide is synthesized using four basic methods: Staudenmaier, Hofmann, Brodie and Hummers. Many variations of these methods exist, with improvements constantly being explored to achieve better results and cheaper processes. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the graphene oxide.



Graphene oxide uses

Graphene Oxide films can be deposited on essentially any substrate, and later converted into a conductor. This is why GO is especially fit for use in the production of transparent conductive films, like the ones used for flexible electronics, solar cells, chemical sensors and more. GO is even studied as a tin-oxide (ITO) replacement in batteries and touch screens.

Graphene Oxide has a high surface area, and so it can be fit for use as electrode material for batteries, capacitors and solar cells. Graphene Oxide is cheaper and easier to manufacture than graphene, and so may enter mass production and use sooner.

GO can easily be mixed with different polymers and other materials, and enhance properties of composite materials like tensile strength, elasticity, conductivity and more. In solid form, Graphene Oxide flakes attach one to another to form thin and stable flat structures that can be folded, wrinkled, and stretched. Such Graphene Oxide structures can be used for applications like hydrogen storage, ion conductors and nanofiltration membranes.

Graphene oxide is fluorescent, which makes it especially appropriate for various medical applications. bio-sensing and disease detection, drug-carriers and antibacterial materials are just some of the possibilities GO holds for the biomedical field.

Buy Graphene Oxide

Graphene oxide is relatively affordable and easy to find, with many companies that sell it. It does, however, get confusing since different companies offer products that vary in quality, price, form and more - making the choice of a specific product challenging. If you are interested in buying GO, contact Graphene-Info for advisement on the right GO for your exact needs!

Further reading

The latest graphene oxide news:

Research team develops new method to generate precisely controlled graphene microbubbles

Researchers at Swinburne University of Technology recently teamed up with teams from National University of Singapore, Rutgers University, University of Melbourne, and Monash University, to develop a method to generate precisely controlled graphene microbubbles on a glass surface using laser pulses.

Schematic of optical setup for characterizing the GO microbubbles imageSchematic of optical setup for characterizing the GO microbubbles. Image from article

Microbubbles - around 1-50 micrometers in diameter - can have various applications like drug delivery, membrane cleaning, biofilm control, and water treatment. They've been applied as actuators in lab-on-a-chip devices for microfluidic mixing, ink-jet printing, and logic circuitry, and in photonics lithography and optical resonators. They also have great potential for other biomedical imaging and applications like DNA trapping and manipulation applications.

Graphene-Info updates all its graphene market report

Today we published new versions of all our graphene market reports. Graphene-Info provides comprehensive niche graphene market reports, and our reports cover everything you need to know about these niche markets. The reports are now updated to October 2020.

Graphene batteries market report 3D cover

The Graphene Batteries Market Report:

  • The advantages using graphene batteries
  • The different ways graphene can be used in batteries
  • Various types of graphene materials
  • What's on the market today
  • Detailed specifications of some graphene-enhanced anode material
  • Personal contact details into most graphene developers

The report package provides a good introduction to the graphene battery - present and future. It includes a list of all graphene companies involved with batteries and gives detailed specifications of some graphene-enhanced anode materials and contact details into most graphene developers. Read more here!

Royal Canadian Navy partners with ZEN Graphene and Evercloak to test graphene oxide dehumidification membrane technology

ZEN Graphene SolutionsZen Graphene Solutions logo image recently announced that the Naval Material Technology Management (NMTM) section of the Royal Canadian Navy (RCN) has partnered with ZEN and Evercloak as a testing organization, and has agreed to provide in-kind donations of test services from the Naval Engineering Test Establishment (NETE).

The tests will compare the efficiency of an HVAC unit produced with the Evercloak dehumidification membrane technology to the incumbent HVAC system that is currently in use on the RCN’s Halifax-class frigates.

Graphene quantum dots help check water content in soil

A recent study by researchers at Gauhati University, Indian Institute of Technology Bombay and DAIICT in India has demonstrated a soil moisture sensor made from graphene quantum dots, which are nanometer-sized fragments of graphene.

Water sensors are vital for various agriculture applications, like keeping track of the watering schedule for a large number of plants, such as for a field of crops. Soil moisture sensors measure the water content in the soil to avoiid crop destruction by under or over watering the field.

Health-tech startup Flextrapower (formerly Bonbouton) launches GO-enhanced protective face masks

As part of the global fight against the COVID-19 pandemic, researchers continue innovating and investigating improvements in personal protective technology, such as nanotechnology for safer masks. One of the companies involved in this quest is a firm called Flextrapower (formerly Bonbouton), created to leverage research originally created in Stevens labs for biomedical applications.

GO-enhanced face masks by Bonbouton image

Flextrapower has been developing several graphene-based applications, including the most recent COVID-focused effort, a graphene mask.