What is graphene?

Graphene is a material made of carbon atoms that are bonded together in a repeating pattern of hexagons. Graphene is so thin that it is considered two dimensional. Graphene's flat honeycomb pattern gives it many extraordinary characteristics, such as being the strongest material in the world, as well as one of the lightest, most conductive and transparent. Graphene has endless potential applications, in almost every industry (like electronics, medicine, aviation and much more).

An ideal graphene sheet image

The single layers of carbon atoms provide the basis for many other materials. Graphite, like the substance found in pencil lead, is formed by stacked graphene. Carbon nanotubes are made of rolled graphene and are used in many emerging applications from sports gear to biomedicine.

What is graphene oxide?

As graphene is expensive and relatively hard to produce, great efforts are made to find effective yet inexpensive ways to make and use graphene derivatives or related materials. Graphene oxide (GO) is one of those materials - it is a single-atomic layered material, made by the powerful oxidation of graphite, which is cheap and abundant. Graphene oxide is an oxidized form of graphene, laced with oxygen-containing groups. It is considered easy to process since it is dispersible in water (and other solvents), and it can even be used to make graphene. Graphene oxide is not a good conductor, but processes exist to augment its properties. It is commonly sold in powder form, dispersed, or as a coating on substrates.

Graphene Oxide structure

Graphene oxide is synthesized using four basic methods: Staudenmaier, Hofmann, Brodie and Hummers. Many variations of these methods exist, with improvements constantly being explored to achieve better results and cheaper processes. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the graphene oxide.

Graphene oxide uses

Graphene Oxide films can be deposited on essentially any substrate, and later converted into a conductor. This is why GO is especially fit for use in the production of transparent conductive films, like the ones used for flexible electronics, solar cells, chemical sensors and more. GO is even studied as a tin-oxide (ITO) replacement in batteries and touch screens.

Graphene Oxide has a high surface area, and so it can be fit for use as electrode material for batteries, capacitors and solar cells. Graphene Oxide is cheaper and easier to manufacture than graphene, and so may enter mass production and use sooner.

GO can easily be mixed with different polymers and other materials, and enhance properties of composite materials like tensile strength, elasticity, conductivity and more. In solid form, Graphene Oxide flakes attach one to another to form thin and stable flat structures that can be folded, wrinkled, and stretched. Such Graphene Oxide structures can be used for applications like hydrogen storage, ion conductors and nanofiltration membranes.

Graphene oxide is fluorescent, which makes it especially appropriate for various medical applications. bio-sensing and disease detection, drug-carriers and antibacterial materials are just some of the possibilities GO holds for the biomedical field.

Buy Graphene Oxide

Graphene oxide is relatively affordable and easy to find, with many companies that sell it. It does, however, get confusing since different companies offer products that vary in quality, price, form and more - making the choice of a specific product challenging. If you are interested in buying GO, contact Graphene-Info for advisement on the right GO for your exact needs!

Further reading

Latest Graphene Batteries news

Researchers from India use graphene oxide to design a novel anti-cancer system

Jun 25, 2017

Researchers at the Indian Institute of Science Education and Research (IISER) Pune have used graphene oxide to develop a novel cancer drug delivery system. The researchers' achievement relies on a rather surprising revelation - they found that when a FDA-approved anticancer drug cisplatin was added, the graphene oxide sheets self-assembled into spherical nanoparticles enclosing the drug within.

Lab tests showed that the nanoparticles (of 90-120 nanometre in size) containing cisplatin and either of two other anticancer drugs ( proflavine and doxorubicin) were taken up by cervical cancer cells leading to programmed cell death.

A Swinburne project for safe and durable graphene supercapacitors gets closer to commercialization

Jun 19, 2017

Researchers at Swinburne University are progressing towards producing commercially viable, chemical-free, long-lasting, safe energy devices. The team is developing the Bolt Electricity Storage Technology (BEST) – a graphene oxide-based supercapacitor offering high performance and low-cost energy storage.

The team explains that this technology is this and environmentally friendly, and a patent was recently filed on it. It is reportedly on the brink of becoming a commercial prototype. Also stated was that investment in the technology's development will soon be under way through Graphene Solutions, a joint venture between graphite miner First Graphite Resources (FGR) and Australia-based electronics company Kremford.

Graphene Investment Guide

Zenyatta Ventures and Lakehead University announce scale-up of GO program

Jun 16, 2017

Zenyatta Ventures has announced a program for a scaled-up production method of its graphite to graphene oxide for applications like water treatment, sensors, supercapacitors and Li‐ion batteries. The program is receiving grant funding from the Ontario Centres for Excellence (OCE) to allow a team of scientists at Lakehead University in Ontario, Canada to carry out this research.

The OCE funding helps established Ontario‐based companies develop, implement and commercialize technical innovations by supporting partnerships with publicly‐funded post‐secondary institutions. The focus of the research work will be on scaling up production methods for Zenyatta’s graphite to GO, a first critical step towards commercialization of the technology. The OCE VIP II $100,000 grant will be administered over two years and Zenyatta will be contributing $50,000 in cash and $60,000 in‐kind support to the project.

Researchers create color-changing nanomaterials using graphene oxide

Jun 12, 2017

Researchers affiliated with UNIST (Ulsan National Institute of Science and Technology) in Korea have engineered a new type of carbon nanomaterials, reportedly capable of changing shapes and colors depending on the type of solvents used. Such materials have attracted much attention thanks to their unique optical properties and structures.

The research team has presented a unique design and synthesis of hybrid carbon nanosheets (CNSs), which show a strong solvatochromic behavior (the ability of a chemical to change color due to a change in solvent polarity) with wide color tunability ranging from blue to orange and even to white in various solvents. This unique hybrid CNS features clusters of carbon nanorings on the surface of graphene-oxide (GO) nanosheets as the product of the hydrothermal reaction of small molecular precursors in the presence of GO nanosheets. Moreover, under UV and visible-light excitation, the hybrid CNS exhibits tunable emission spanning the wide range of colors in a series of solvents with different polarities.

Graphene-based sensor may improve the diagnosis and treatment of asthma

May 22, 2017

Rutgers University scientists have created a graphene-based sensor that could lead to earlier detection of asthma attacks and improve the management respiratory diseases, possibly preventing hospitalizations and deaths.

Rutgers team's graphene sensor to diagnose asthma image

The Rutgers team aims for the sensor to pave the way for the development of devices - possibly resembling fitness trackers - which people could wear and then know when and at what dosage to take their medication.

Versarien - Think you know graphene? Think again!Versarien - Think you know graphene? Think again!