Graphene-Info: the graphene experts

Graphene-Info is the world's leading graphene industry portal since 2009. We provide a multitude of services to the graphene market based on our extensive knowledge hub and industry connections.

Graphene is the strongest, thinnest and most conductive material known to man. With such remarkable properties, it is no wonder that graphene enables exciting new applications in electronics, energy, medicine, aerospace and many more markets.

Recent graphene News

Directa Plus expects a strong 2020 with good progress across all of its vertical markets

Italy-based graphene developer Directa Plus says that it has made "continued good progress" during H2 2020, with new orders and agreements across all of the company's verticals. Directa+ expects its 2020 revenues to reach around €6 million, exceeding current consensus market expectations.

Directa Plus' new graphene masks image

Directa+ says that the improvement has been primarily driven by the sales of G+ enhanced face masks, including Co-masks, which have proven very popular with both individual and corporate customers and have generated strong demand. The strengthening performance of Setcar, the Environmental division, has also contributed to the improved revenue expectations for the current year.

Researchers design a lightweight and highly efficient graphene heat pipe

Researchers at Sweden-based Chalmers University of Technology, in collaboration with researchers in China and Italy, have found that graphene-based heat pipes can help solve the problems of cooling electronics and power systems used in avionics, data centers, and other power electronics.

Cooling electronics efficiently with graphene-enhanced heat pipes imageA) Image of a real GHP; B) schematic designing of the GHP; C) working principle of the GHP

Electronics and data centers need to be efficiently cooled and rid of excess heat in order to function properly. Currently, heat pipes are usually made of copper, aluminum or their alloys. Due to the relatively high density and limited heat transmission capacity of these materials, heat pipes are facing severe challenges in future power devices and data centers.

Paragraf, Rolls-Royce, TT Electronics and the Compound Semiconductor Applications Catapult join to establish a first-ever supply chain for graphene Hall Effect sensors

Paragraf, UK-based graphene electronic sensors and devices company, announced that it is helping to realize an industry first by implementing a supply chain for graphene Hall-Effect sensors used in high-temperature Power Electronics, Electric Machines and Drives (PEMD) within the aerospace sector.

Paragraf graphene Hall Effect sensors image

Named High-T Hall, the project stems from the UK Research and Innovation’s (UKRI) ‘Driving the Electric Revolution’ challenge and brings together Paragraf, Rolls-Royce, TT Electronics (Aero Stanrew) and the Compound Semiconductor Applications Catapult (CSA Catapult). It is set to demonstrate how graphene-based Hall Effect sensors can operate reliably at high temperatures, paving the way for more efficient electric engines in aerospace and beyond.

Researchers find that graphene quantum dots are biodegradable by human enzymes

A study recently conducted by Graphene Flagship partners the University of Strasbourg and CNRS, France, in collaboration with Nanyang Technological University in Singapore, has shown that graphene quantum dots are biodegradable by two enzymes found in the human body.

Graphene quantum dots (GQDs) are tiny flakes usually smaller than five nanometres that have potential for many applications. GQDs are fluorescent, so they can absorb light and then emit it, often at a different wavelength. They are also so small that they can penetrate cells. Together, these properties pave the way to a wide array of applications in bioimaging, biosensing and new therapies - among other potential uses.

Graphene assists in studying gas dynamics at the nanoscale

Scientists from Delft University of Technology and the University of Duisburg-Essen have used the motion of graphene to identify noble gasses. These gasses are chemically passive and do not react with other materials, which makes it challenging to detect them.

Schematic of device geometry and gas effusion path imageSchematic of the device geometry and gas effusion path. Image from Nature Communications

Graphene's atomic thickness makes it a perfect filter material for gasses and liquids: graphene by itself it is not permeable, but small perforations make it very permeable. Moreover, the material is among the strongest known and withstands high stresses. Together, these two traits provide the perfect basis for new types of gas sensors.

Haydale updates that partner IRPC starts graphene-enhanced face masks production

Haydale Graphene IndustriesHaydale logo has announced that its partner IRPC has now completed the development project with Haydale and started production of its new washable functionalized graphene-enhanced fabric mask.

IRPC has placed a follow-on order for 200 kilograms of Haydale’s bespoke ink, with further orders anticipated, the advanced materials group said. The face masks are currently being produced for use internally within the IRPC group, with a forecasted external order book for 2021.

Graphene coating could help create higher energy density lithium-ion batteries

Researchers at Northwestern University and Clemson University in the U.S, along with researchers from Sejong University in Korea, have examined the origins of degradation in high energy density LIB cathode materials and developed graphene-based strategies for mitigating those degradation mechanisms and improving LIB performance.

Their research could be valuable for many emerging applications, particularly electric vehicles and grid-level energy storage for renewable energy sources, such as wind and solar.