Graphene-Info: the graphene experts

Graphene-Info has been the leading international graphene publication for over 9 years, with a readership of tens of thousands of professionals a month. We provide a multitude of services to the graphene market based on our extensive and up-to-date knowledge hub and close ties with industry leaders. Our consultancy services include market outreach assistance, nanomaterials brokerage, support for graphene initiatives, business development and more.

Graphene is the world's strongest, thinnest and most conductive material, made from carbon. Graphene's remarkable properties enable exciting new applications in electronics, solar panels, batteries, medicine, aerospace, 3D printing and more!

Recent graphene News

First Graphene to work with SupremeSAT on graphene-enhanced components for miniature satellites

First Graphene logo imageAdvanced materials company First Graphene has announced that it has entered into a binding Memorandum of Understanding with SupremeSAT for the development of graphene-enhanced components for SupremeSAT's Miniature Satellite Assembly Project. The collaboration with FGR will aim to develop graphene-enhanced components, for both strength and weight reduction, and also heat and radiation shielding.

SupremeSAT is working on the Project with EnduroSAT of Bulgaria. Two leading universities in the USA will be joining this project shortly. The Project will test satellite interconnectivity and data exchange between satellites and a data relay within a constellation. Initially a duo of 1.5U Cube Satellites will be assembled at SupremeSAT's Satellite Assembling facility - Pallekele - Kandy, with hardware for the satellites, training and other variants of engineering support coming from EnduroSAT.

Archer to collaborate with UNSW on graphene-based batteries

Australia-based mining company Archer Exploration has announced a collaboration agreement with the University of New South Wales (UNSW) to develop and implement Archer’s graphite and graphene materials for use in energy storage system applications targeting lithium-ion batteries.

The collaboration will mainly focus on the design of high-performance electrodes for lithium-ion batteries using graphite and graphene sourced from Archer’s Campoona deposit. This work is aiming at the development of electrodes for lithium-ion batteries and implementation of these electrodes in a number of advanced application full-cell and half-cell configurations.

Chalmers team fights bacterial infections using vertical graphene films

A research team at Chalmers University has shown that a layer of vertical graphene flakes forms a protective surface that makes it impossible for bacteria to attach. Instead, bacteria are sliced apart by the sharp graphene flakes and killed. Coating implants with a layer of graphene flakes can therefore help protect patients against infection, eliminate the need for antibiotic treatment, and reduce the risk of implant rejection. The osseointegration - the process by which the bone structure grow to attach the implant - is not disturbed. In fact, the graphene has been shown to benefit the bone cells.

Chalmers University researchers stated that the biological applications of graphene began to materialize a few years ago. The researchers saw conflicting results in earlier studies, in which some showed that graphene damaged the bacteria, others that they were not affected. "We discovered that the key parameter is to orient the graphene vertically. If it is horizontal, the bacteria are not harmed" says Ivan Mijakovic, Professor at the Department of Biology and Biological Engineering.

Chinese scientists develop a GO-based 3D conic device to increase solar-thermal conversion

Researchers from Nanjing University in China have developed a new device of 3D hollow-cone structure based on a graphene oxide film that can greatly increase the solar-thermal conversion efficiency.

The device, named 'Artificial Transpiration', is inspired by the transpiration process of trees. It has a special 1D water path within it, which can reduce the energy loss in conduction. The cone structure can reportedly collect more sunlight throughout the day when compared to a flat device, as about 10-50% of sunlight is diffusive. Thus it performs even better in the real world than in the laboratory, the team said.

XFNano graphene materials used in advanced energy application research

The following is a sponsored post by XFNano

XFNano's graphene materials were recently used in two fascinating research work focused on advanced energy applications.

NiCo-HS@G fabrication (XFNano)

The first is a work by teams from Anhui Normal University, Chinese Academy of Sciences (CAS) and the University of the Chinese Academy of Sciences which developed a fast, one-step strategy to prepare sandwiched metal hydroxide/graphene composites through a kinetically controlled coprecipitation under room temperature. Such NiCo-HS@G nano-composite exhibits good electrocatalytic activity for OER, superior to most of the reported OER catalysts. Such performance and the facile preparation of NiCo-HS@G opens up a new avenue for the cost-effective and low-energy-consumption production of various sandwiched metal hydroxides/graphene composites as efficient OER electrocatalysts with desired morphology and competing performance for the applications in diverse energy devices.

Versarien secures graphene supply contract with major tyre producer

Versarien LogoVersarien has announced that it has secured a purchase order for the Company's proprietary Nanene few layer graphene nano-platelets from a leading tyre producer, based in Europe.

Versarien will initially be providing 500g of Nanene for testing purposes, to explore the benefits of adding graphene to tyres supplied to the automotive sector. If successful, further orders would be expected.

Archer and FlexeGRAPH enter agreement to develop graphene-based heat management technology

Archer Exploration Limited today recently announced a Collaboration Agreement with Flex-G (FlexeGRAPH) to jointly develop graphite and graphene based advanced materials for the thermal management of electric vehicle batteries, internal combustion engines, and high-performance computing systems.

The agreement includes advanced materials development, processing, evaluation and characterization, and in particular focuses on the development of thermal management applications using materials from AXE’s Campoona project.

XFNANO: Graphene and graphene-like materials since 2009XFNANO: Graphene and graphene-like materials since 2009