Graphene-Info: the graphene experts

Graphene-Info has been the leading international graphene publication for over 9 years, with a readership of tens of thousands of professionals a month. We provide a multitude of services to the graphene market based on our extensive and up-to-date knowledge hub and close ties with industry leaders. Our consultancy services include market outreach assistance, nanomaterials brokerage, support for graphene initiatives, business development and more.

Graphene is the world's strongest, thinnest and most conductive material, made from carbon. Graphene's remarkable properties enable exciting new applications in electronics, solar panels, batteries, medicine, aerospace, 3D printing and more!

Recent graphene News

Graphene to enable ALS diagnosis

A team of researchers from the University of Illinois at Chicago has been working on a way to facilitate ALS diagnosis by using a thin sheet of graphene. This material produces constant vibrations, also known as phonons, whose characteristics change once other materials are placed on its surface. By measuring these changes, researchers are able to tell the differences in the composition of different materials.

“Graphene is just one atom thick, so a molecule on its surface in comparison is enormous and can produce a specific change in graphene’s phonon energy, which we can measure,” Vikas Berry, associate professor and head of chemical engineering in the UIC College of Engineering and an author of the paper, said in a news release.

New Graphene Innovation center opens

The Graphene Innovation center, a £60 million world-class center dedicated to researching graphene and its applications has been opened in Manchester.

The Graphene Engineering Innovation Center (GEIC) at the University of Manchester will accelerate the commercial impact of graphene and help realize its potential to revolutionize many sectors.

G2O secures £1 million investment

water technology company G2O recently announced a £1.035 million investment in a round led by private equity firm Maven Capital Partners, and plans to sign collaborative partnerships with suppliers and enter global markets to expand customer reach.

Maven Capital Partners, one of the UK’s most active private equity firms, has led a £1.035 million investment in Manchester-headquartered water treatment technology business. A total of £600,000 has been provided by Maven funds, which includes a £400,000 investment from NPIF – Maven Equity Finance, which is part of the Northern Powerhouse Investment Fund and a £200,000 investment from the Finance Durham Fund, both managed by Maven. The additional £435,000 is from a number of private individual investors.

SaltX announces first milestone in its collaboration with Ahlstrom-Munksjö – with 2D fab delivering the graphene

SaltX Technology, a Swedish energy storage company, recently announced that it has passed the first milestone in the strategic development project together with Ahlstrom-Munksjö, a global manufacturer of fiber-based materials.

Over the last six months, the companies have reportedly been able to verify an industrial manufacturing method to coat graphene on paper and integrate it with SaltX patented nano-coated salt for its large-scale energy storage solution. The graphene manufacturer 2D fab participates in the project and supplies the graphene. The companies are now initiating production runs in Ahlstrom-Munksjö’s pilot line.

Artificial magnetic field produces exotic behavior in graphene sheets

A study by Brazilian physicist Aline Ramires with Jose Lado, a Spanish-born researcher at the Swiss Federal Institute of Technology (ETH Zurich), showed that a simple sheet of graphene has fascinating properties due to a quantum phenomenon in its electron structure called Dirac cones. The system becomes even more interesting if it comprises two superimposed graphene sheets, and one is very slightly turned in its own plane so that the holes in the two carbon lattices no longer completely coincide. For specific angles of twist, the bilayer graphene system displays exotic properties such as superconductivity.

The researchers found that the application of an electrical field to such a system produces an effect identical to that of an extremely intense magnetic field applied to two aligned graphene sheets. "I performed the analysis, and it was computationally verified by Lado," Ramires said. "It enables graphene's electronic properties to be controlled by means of electrical fields, generating artificial but effective magnetic fields with far greater magnitudes than those of the real magnetic fields that can be applied."

A novel graphene sensor enables highly sensitive health monitoring

Researchers from the University of Strasbourg & CNRS (France), in collaboration with Adam Mickiewicz University in Poznań (Poland) and the University of Florence (Italy), have developed a new generation of pressure sensors based on graphene and molecular “springs”. The researchers say that thanks to their highest sensitivity, these devices are ideally suited for health monitoring and point-of-care testing.

Graphene-sensor-matrix-for-health-monitoring-image

The team reports that many electroactive materials have been employed for this purpose. Among these, graphene has been the most studied because of its excellent electrical conductivity, exceptional mechanical properties and large surface area. The researchers rely envision applications of graphene-based sensors in the form of tattoos.

New graphene-based sensor could improve food safety and detect gases and chemicals

researchers from Jiliang University and Zhejiang University of Technology in China, along with researchers at the Technical University of Denmark, have devised a new design for a graphene-based sensor that can simultaneously detect multiple substances - including dangerous bacteria and other pathogens. In addition to food safety, the new design could improve detection of gases and chemicals for a wide range of applications.

New graphene-based sensor could improve food safety and detect gases and chemicals image

"Our design is based on graphene sheets, which are two-dimensional crystals of carbon just one atom thick," said research team member Bing-Gang Xiao, from China Jiliang University. "The sensor is not only highly sensitive but can also be easily adjusted to detect different substances."

XFNANO: Graphene and graphene-like materials since 2009 XFNANO: Graphene and graphene-like materials since 2009