Graphene-Info: the graphene experts

Graphene-Info has been the leading international graphene publication for over 5 years, with a readership of tens of thousands of professionals a month. We provide a multitude of services to the graphene market based on our extensive and up-to-date knowledge hub and close ties with industry leaders. Our consultancy services include market outreach assistance, nanomaterials brokerage, support for graphene initiatives, business development and more.

Graphene is the world's strongest, thinnest and most conductive material, made from carbon. Graphene's remarkable properties enable exciting new applications in electronics, solar panels, batteries, medicine, aerospace, 3D printing and more!

Recent graphene News

Directa Plus and Deewear launch a graphene-enhanced sportswear line

May 24, 2017

Directa Plus, a producer and supplier of graphene-based products, has announced that Deewear, an Italy-based company focused on providing sportswear that combine design, technology and wearability, has launched D-ONE, a new generation of sportswear that combines the properties of Directa Plus’ Graphene Plus (G+) with the benefits of postural compress fabric, while offering superior comfort.

Directa Plus and Deewear's graphene sportswear line image

D-ONE consists of three high-performance technical layers: an inner layer coated in G+, an external layer of smart compress fabric and, in the advanced range, a middle layer that provides muscle articulation and postural support.

Graphene-based biological supercapacitors may enable improved pacemakers and implantable medical devices

May 24, 2017

Researchers from UCLA and the University of Connecticut have designed a biological supercapacitor which operates using ions derived from bodily fluids. The team predicts that this work could lead to longer-lasting cardiac pacemakers and other implantable medical devices.

The biosupercapacitor, which features graphene layered with modified human proteins as an electrode, could be used in next-generation implantable devices to speed bone growth, promote healing or stimulate the brain.

Applied Graphene Materials enters agreement to develop and commercialize a new graphene ink technology

May 24, 2017

Applied Graphene Materials logoApplied Graphene Materials has outlined details of a new graphene-enhanced ink technology and signed a development deal with the University of Sheffield Advanced Manufacturing Research Center. A patent for this new development, called Structural Ink, has been registered and once fully commercialized, the product will be targeted at the advanced composites industry.

The technology will aim to enable users to increase mechanical toughness, through the addition of graphene. This is ultimately designed to improve performance, enable further weight reduction and reduce total manufacturing costs.

Graphene doubles as bacteria zapper and surface cleaner

May 24, 2017

Researchers at Rice University and Ben-Gurion University of the Negev in Israel (BGU) have shown that laser-induced graphene LIG (that was invented at Rice) is a highly effective anti-fouling and anti-biofouling material (that protects surfaces from the buildup of microorganisms, plants or other biological material on wet surfaces), and, when electrified, also serves as a bacteria zapper.

Rice and BGU turn LIG into antibacterial and antifouling material image

“This form of graphene is extremely resistant to biofilm formation, which has promise for places like water-treatment plants, oil-drilling operations, hospitals and ocean applications like underwater pipes that are sensitive to fouling,” Prof. James Tour says. “The antibacterial qualities when electricity is applied is a great additional benefit”.

Zap&Go awarded with $1.6 million from the EU to continue development of its graphene supercapacitor enhanced power tools

May 23, 2017

UK-based graphene supercapacitor developer Zap&Go announced that it was awarded with a $1.6 million USD from the European Union to perfect the prototype cordless tools powered by its fast-charging graphene supercapacitors.

ZapGo graphene supercapacitor powered tool prototype (PE Europe 2017)

Zap&Go initiated a self-funded feasibility study to embed its graphene supercapacitors in cordless tools. The company says that it has received commitments from major OEMs in joint development agreements. In this new EU-funded project, Zap&Go intends to further develop its power modules and electronics, integrating them with cordless tools such as vacuum cleaners and power drills, and finally build units to conduct customer trials.

Manipulating the electron spin can lower the contact resistance in graphene-metal interfaces

May 22, 2017

NUS researchers discovered that manipulating the electron spin lowers the contact resistance in graphene-metal interfaces, which normally suffer from large electrical resistance.

Spin filtering in metal-graphene interfaces image

The researchers have shown that edga-contacted device geometries in metallic-graphene interfaces feature some of the lowest contact resistances reported to date - significantly lower than in surface-contracted interfaces. The researchers explain that this is due to the different behavior of electron spins in these geometries.