Graphene-Info: the graphene experts

Graphene-Info is the world's leading graphene industry portal since 2009. We provide a multitude of services to the graphene market based on our extensive knowledge hub and industry connections.

Graphene is the strongest, thinnest and most conductive material known to man. With such remarkable properties, it is no wonder that graphene enables exciting new applications in electronics, energy, medicine, aerospace and many more markets.

Recent graphene News

Log 9 develops ultra-fast charging battery technology for EVs

India-based start-up Log 9 has announced the development of its new graphene-enhanced battery for electric vehicles. Log 9 states its Rapid Charging Battery Technology is capable of fully charging in under 15 minutes and that it has a lifetime of over 15 years of use.

Log 9 unveils ultra-fast charging battery technology for intra-city EVs image

Other claims made by Log 9 include up to 5x power which would help in increased load-bearing capacity and acceleration. Additionally, the Company says that it is 5-times safer than lithium-ion batteries in terms of fire-resistance and impact-resistance. Log 9 says that its new batteries would offer a range of up to 70 kilometers for two-wheel EVs and 60-80 kilometers for three-wheel EVs.

Concrene announces plans for first graphene reinforced concrete product to hit the market

In July 2020, Thomas Swan signed an exclusive agency agreement with Concrene, for a graphene-enhanced concrete project. Now, Concrene has announced that the first commercial concrete product reinforced with graphene will be available on the US market in April 2021.

The first graphene reinforced concrete product on the market by Concrene image

Fairview Hearthside, a licensee of the innovative nanotechnology, will manufacture a range of Concrene precast fire pits for private homes and professional outdoor venues. The fire pits offer enhanced durability, long outdoor performance and natural concrete finish.

Researchers manage to induce “artificial magnetic texture” in graphene

An international research team, led by the University at Buffalo, has reported an advancement that could help give graphene magnetic properties. The researchers describe in their work how they paired a magnet with graphene, and induced what they describe as “artificial magnetic texture” in the nonmagnetic material.

Induced magnetism in graphene could also promote spintronics imageThe image shows eight electrodes around a 20-nanometer-thick magnet (white rectangle) and graphene (white dotted line). Credit: University at Buffalo.

“Independent of each other, graphene and spintronics each possess incredible potential to fundamentally change many aspects of business and society. But if you can blend the two together, the synergistic effects are likely to be something this world hasn’t yet seen,” says lead author Nargess Arabchigavkani, who performed the research as a PhD candidate at UB and is now a postdoctoral research associate at SUNY Polytechnic Institute.

Q&A with Dominic Spooner, director of graphene-enhanced battery casings Vaulta

Vaulta is an Australia-based startup that focuses on graphene-enhanced battery casings. Vaulta's director, Dominic Spooner, had a chat with the Graphene-Info team to help shed some light on this fascinating young company, it's technology and plans for the future.

Vaulta's Dominic Spooner image

Dominic has over 12 years’ experience as a design engineer and has worked in a wide range of industries including renewables and batteries, defense and aerospace, consumer products, commercial products and startups. He reveals that the idea for Vaulta came to him after working directly in the field of battery design and seeing an opportunity for growth that was largely being overlooked in favor of continuing with the status quo of battery module design. Dominic founded Ember Design House in 2017 undertaking general product from R&D to production and in 2019, he founded Vaulta to focus fully on the battery casing industry and turn his product ideas into reality.

EPFL scientists develop highly efficient graphene-based carbon dioxide filter

Scientists at EPFL have developed an energy-efficient graphene-based carbon dioxide filter that can extract carbon dioxide out of a gas mix, to then be either stored or converted into useful chemicals.

Professor Kumar Varoon Agrawal at EPFL's School of Basic Sciences (EPFL Valais Wallis) has led a team of chemical engineers to develop the world's thinnest filter from graphene. "Our approach was simple," says Agrawal. "We made carbon dioxide-sized holes in graphene, which allowed carbon dioxide to flow through while blocking other gases such as nitrogen, which are larger than carbon dioxide." The result is a record-high carbon dioxide-capture performance.

Gnanomat announced new commercially available Graphene-Silver nanocomposite

Gnanomat recently announced the launch of its new commercially-available graphene-based nanocomposite.

A new Graphene-Silver nanocomposite commercially available by Gnanomat image

Graphene – Silver nanocomposite, a product supplied as a dry powder, is made of pristine graphene coated with silver nanoparticles. This type of material has been shown to have great potential in scientific literature, in applications such as inks on textiles for highly conductive wearable electronics, electrochemical sensors, catalyst, antibacterial activity and detection of heavy metal ions.

Terahertz imaging of graphene could promote industrialization

A collaborative team of Graphene Flagship partners from DTU, Denmark, IIT, Italy, Aalto University, Finland, AIXTRON, UK, imec, Belgium, Graphenea, Spain, Warsaw University, Poland, and Thales R&T, France, as well as collaborators in China, Korea and the US, has come together to develop and mature terahertz spectroscopy techniques, that can penetrate graphene films and enable the creation of detailed maps of their electrical quality, without damaging or contaminating the material. The result of this collaborating is a novel measurement tool for graphene characterization.

Graphene is often ‘sandwiched’ between many different layers and materials to be used in electronic and photonic devices, which complicates the process of quality assessment. Terahertz spectroscopy can help by imaging the encapsulated materials and revealing the quality of the graphene underneath, exposing imperfections at critical points in the fabrication process. It is a fast, non-destructive technology that probes the electrical properties of graphene and layered materials, with no need for direct contact.