What is a solar panel?

Solar panel electricity systems, also known as solar photovoltaics (PV), capture the sun’s energy (photons) and convert it into electricity. PV cells are made from layers of semiconducting material, and produce an electric field across the layers when exposed to sunlight. When light reaches the cell, some of it is absorbed into the semiconducting material and causes electrons to break loose and flow. This flow of electrons is an electric current, that can be drawn out and used for powering outside devices. This current, along with the cell’s voltage (a result of built-in electric fields), define the power that the solar cell is capable of producing. It is worth mentioning that a PV cell can produce electricity without direct sunlight, but more sunshine equals more electricity.

Solar panel array photo

A module, or panel, is a group of cells connected electrically and packaged together. several panels can also form an array, which can provide more electricity and be used for powering larger instruments and devices.

Different kinds of Solar cells

Solar cells are roughly divided into three categories: Monocrystalline, Polycrystalline and Thin Film. Most of the world’s PVs are based on a variation of silicon. The purity of the silicon, or the more perfectly aligned silicon molecules are, affects how good it will be at converting solar energy. Monocrystalline solar cells (Mono-Si, or single-crystal-Si) go through a process of cutting cylindrical ingots to make silicon wafers, which gives the panels their characteristic look. They have external even coloring that suggests high-purity silicon, thus having the highest efficiency rates (typically 15-20%). They are also space efficient (their efficiency allows them to be small) and live longer than other kinds of solar panels. Alas, they are more expensive than other kinds and tend to be damaged by external dirt or snow.

Polycrystalline silicon (p-Si or mc-Si) solar cells do not go through the abovementioned process, and so are simpler and cost less than Monocrystalline ones. Their typical efficiency is 13-16%, due to lower silicon purity. They are also bigger and take up more space.

Thin-Film solar cells (TFSC), are made by depositing one or several thin layers of photovoltaic material onto a substrate. Different types of TFSCs are categorized by which photovoltaic material is deposited onto the substrate: Amorphous silicon (a-Si), cadmium telluride (CdTe), copper indium gallium selenide (CIS/CIGS), polymer solar panels and organic photovoltaic cells (OPC). Thin-film modules have reached efficiencies of 7-13%. Their mass production is simple, they can be made flexible and are potentially cheaper to manufacture than crystalline-based solar cells. They do, however, take up a lot of space (hampering their use in residential applications) and tend to degrade faster than crystalline solar panels.



Solar power advantages and disadvantages

Solar power is free and infinite, and solar energy use indeed has major advantages. It is an eco-friendly, sustainable way of energy production. Solar energy systems today are also much cheaper than they were 20 years ago, and save money in electricity expenses. In addition, it is a much environmentally cleaner form of energy production that helps reduce global warming and coal pollution. It does not waste water like coal and nuclear power plants and is also considered to be a form of energy that is much safer for use.

Although solar power production is widely considered to be a positive thing, some downsides require mentioning. The initial cost of purchasing and installing solar panels can be substantial, despite widespread government subsidy programs and tax initiatives. Sun exposure is critical and so location plays a significant role in the generation of electricity. Areas that are cloudy or foggy for long periods of time will produce much less electricity. Other commonly argues disadvantages regard insufficiency of produced electricity and reliability issues.

Solar power applications

Common solar energy applications include various residential uses such as solar lighting, heating and ventilation systems. Many small appliances utilize solar energy for operation, like calculators, scales, toys and more. Agriculture and horticulture also employ solar energy for the operation of different aids like water pumps and crop drying machines. The field of transportation has been interested in solar powered vehicles for many years, including cars, planes and boats that are vigorously researched and developed. Solar energy also has various industrial applications, ranging from powering remote locations as well as space and satellite systems, to powering transportation signals, lighthouses, offshore navigation systems and many more.

Solar technologies are vigorously researched, aiming to lower costs and improve existing products as well as integrate PV systems in innovative products like PV-powered curtains, clothes and laptop cases.

Graphene and solar panels

Graphene is made of a single layer of carbon atoms that are bonded together in a repeating pattern of hexagons. It is a 2 dimensional material with amazing characteristics, which grant it the title “wonder material”. It is extremely strong and almost entirely transparent and also astonishingly conductive and flexible. Graphene is made of carbon, which is abundant, and can be a relatively inexpensive material. Graphene has a seemingly endless potential for improving existing products as well as inspiring new ones.

Solar cells require materials that are conductive and allow light to get through, thus benefiting from graphene's superb conductivity and transparency. Graphene is indeed a great conductor, but it is not very good at collecting the electrical current produced inside the solar cell. Hence, researchers are looking for appropriate ways to modify graphene for this purpose. Graphene Oxide (GO), for example, is less conductive but more transparent and a better charge collector which can be useful for solar panels.

The conductive Indium Tin Oxide (ITO) is used with a non-conductive glass layer as the transparent electrodes in most organic solar panels to achieve these goals, but ITO is rare, brittle and makes solar panels expensive. Many researches focus on graphene as a replacement for ITO in transparent electrodes of OPVs. Others search for ways of utilizing graphene in improving overall performance of photovoltaic devices, mainly OPVs, as well as in electrodes, active layers, interfacial layers and electron acceptors.

Further reading

Latest Graphene Solar Panels news

Graphene-enhanced fluid improves solar collectors' efficiency

Sep 13, 2017

Researchers at the University of Lisbon's Centro de Química Estrutural have discovered that the addition of graphene to the working fluid of solar collectors helps to regain some of its lost efficiency. Solar thermal collectors are seen as a simple and inexpensive way to make use of solar energy. Pure water is an efficient heat-transfer fluid, but it must be mixed with antifreeze to prevent damage to pipes during freezing conditions, and this lowers its performance.

Graphene enhances the performance of solar collectors image

The properties of an ideal heat-transfer fluid in a solar collector include a high thermal capacity and a freezing point outside of the temperature range likely to be encountered. Unfortunately, in the case of water, satisfying the latter requirement means compromising on the former, as mixing water with antifreeze makes it a less effective carrier of heat.

NSF grant to fund development of inkjet-printed graphene-based water quality sensors

Sep 04, 2017

The National Science Foundation recently awarded University of Wisconsin-Milwaukee scientists $1.5 million to perfect a method of mass-producing graphene-based small water sensors using inkjet printing. The goal is to determine whether the process can be customized in order to scale up production and in a more economic way than traditional manufacturing methods.

Inkjet-printed graphene-based water quality sensors image

The graphene-based sensors, developed at UWM, reportedly outperform current technologies in accuracy, sensitivity and sensing speed. Their performance and size make them useful for continuously monitoring drinking water for miniscule traces of contaminants like lead.

The Graphene Catalog - find your graphene material here

Grolltex announces new CVD graphene facility

Aug 18, 2017

Grolltex logo imageGrolltex, a U.S-based advanced materials and equipment company, recently announced a large-capacity commercial lab for production of high quality CVD graphene. Grolltex states that it is now manufacturing the material in its new class 1000 clean room, producing both raw graphene as well as products made from the material, like sensors, perovskite solar cells, display materials and X-ray windows for use in spacecraft.

The new Grolltex graphene facility is said to be capable of producing large high-quality sheets of graphene for commercial sale. The Company is said to have a patented methodology to manufacture the material in a novel way that yields lower-cost materials of high quality. Grolltex leverages graphene research and patents developed at nearby University of California, San Diego.

MIT team creates flexible, transparent solar cells with graphene electrodes

Aug 05, 2017

Researchers at the Massachusetts Institute of Technology (MIT) have developed flexible and transparent graphene-based solar cells, which can be mounted on various surfaces ranging from glass to plastic to paper and tape. The graphene devices exhibited optical transmittance of 61% across the whole visible regime and up to 69% at 550 nanometers. The power conversion efficiency of the graphene solar cells ranged from 2.8% to 4.1%.

MIT team's flexible, transparent solar cell with graphene electrodes image

A common challenge in making transparent solar cells with graphene is getting the two electrodes to stick together and to the substrate, as well as ensuring that electrons only flow out of one of the graphene layers. Using heat or glue can damage the material and reduce its conductivity, so the MIT team developed a new technique to tackle this issue. Rather than applying an adhesive between the graphene and the substrate, they sprayed a thin layer of ethylene-vinyl acetate (EVA) over the top, sticking them together like tape instead of glue.

Graphene Flagship team creates transistors printed with graphene and other layered materials

Apr 09, 2017

Graphene Flagship researchers from AMBER at Trinity College Dublin, in collaboration with scientists from TU Delft, Netherlands, have fabricated printed transistors consisting entirely of layered materials. The team's findings are said to have the potential to cheaply print a range of electronic devices from solar cells to LEDs and more.

The team used standard printing techniques to combine graphene flakes as the electrodes with other layered materials, tungsten diselenide and boron nitride as the channel and separator to form an all-printed, all-layered materials, working transistor.

Versarien - Think you know graphene? Think again!Versarien - Think you know graphene? Think again!