CSIRO produces graphene from soybeans

Jan 31, 2017

The Commonwealth Scientific and Industrial Research Office (CSIRO) has developed a novel method that uses soybean oil and other waste oils to produce graphene. Called ‘GraphAir’, the method is said to make graphene production faster and simpler.

The “GraphAir” technology is considered simple as it eliminates the need for a highly controlled environment and grows graphene in ambient air. “This ambient-air process for graphene fabrication is fast, simple, safe, potentially scalable, and integration-friendly,” CSIRO researchers said. “Our unique technology is expected to greatly reduce the cost of graphene production and drastically improve the uptake of graphene in new applications.”

Graphene and porphyrins join to create an exciting new material

Jan 08, 2017

Researchers at the Technical University of Munich have found that graphene can be combined with porphyrins, the molecules that convey oxygen in haemoglobin and absorb light during photosynthesis, to get a material with exciting new properties. The resulting hybrid structures could be used in the field of molecular electronics, solar cells and in developing new sensors.

Porphyrins and graphene join to make a new material image

The technique involves growing a graphene layer on a surface of silver to use its catalytic properties. Then, under ultra-high vacuum conditions, porphyrin molecules are added. These lose the hydrogen atoms from their periphery when heated on the metal surface, and they end up connecting to the graphene edges.

Nanjing team develops graphene oxide-based solar desalination system

Dec 05, 2016

Researchers from the Chinese Nanjing University have reportedly developed a graphene oxide-based solar desalination system that does not require a solar concentrator or thermal insulation. Featuring a confined 2D water channel, the system is able to achieve high levels of solar absorption and effective desalination.

The research team stated that it used a graphene oxide film as the basis for a device. The graphene oxide film is said to be foldable and produced using a scalable process. With this at the core of the system, the researchers believe that the development represents "a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution".

Graphene-perovskite solar cells exceed 18% efficiency

Oct 05, 2016

A team of researchers from Italy has created hybrid perovskite-graphene solar cells that show good stability upon exposure to sunlight, while still maintaining an impressive efficiency of over 18% - the highest reported efficiency of graphene perovskite hybrid solar cells to date.

Despite tremendous progress in Perovskite PV performance, the stability of these devices is still questionable. In particular, air and humidity degrade cell performance, as do continued exposure to sunlight and heat, setting back the advantages over other types of solar cells. Graphene and graphene-related materials (GRMs) have properties that make them shine in applications like protective layers, andso arise as natural candidates to protect PSCs from atmospheric degradation.<--break->The Italian team reviewed the protective properties of graphene and GRMs, including graphene oxide (GO) and reduced graphene oxide (rGO), have on PSCs. Moreover, the report describes a new type of hybrid perovskite solar cell containing both graphene flakes and a GO layer. The new cell exhibits a PCE of up to 18.2%.

2D perovskites may rival graphene in PV applications

Aug 10, 2016

Department of Energy (DoE) funded researchers investigated the electronic properties of 2D hybrid organic-inorganic perovskite sheets, as an alternative to graphene and other materials. The researchers reported that such perovskites could rival graphene in PV applications, since the 2D crystals exhibited efficient photoluminescence, were easier to grow than graphene and it's possible to dope it to make the various varieties of ionic semiconductors needed to beat other 2D materials with tunable electronic/photonic properties.

Perovskite crystal image

Scientists created these new forms of hybrid organic-inorganic perovskites in atomically thin 2D sheets and first showed how they hold promise as semiconductor materials for photovoltaic applications. Next they showed how they could serve as an alternative to other 2D semiconductors that are widely studied as potential successors to silicon in future electronic devices.

PlanarTECH - The 2D Materials Solution ProviderPlanarTECH - The 2D Materials Solution Provider