What are composite materials?

Composite materials (also referred to as composition materials, or simply composites) are materials formed by combining two or more materials with different properties to produce an end material with unique characteristics. These materials do not blend or dissolve together but remain distinct within the final composite structure. Composite materials can be made to be stronger, lighter or more durable than traditional materials due to properties they gain from combining their different components.

Most composites are made up of two materials - the matrix (or binder) surrounds a cluster of fibers or fragments of a stronger material (reinforcement). A common example of this structure is fiberglass, which was developed in the 1940’s to be the first modern composite and is still in widespread use. In fiberglass, fine fibers of glass, which are woven into a cloth of sorts, act as the reinforcement in a plastic or resin matrix.

composite crossection image

While composite materials are not a new concept (for example, mud bricks, made from dried mud embedded with straw pieces, have been around for thousands of years), recent technologies have brought many new and exciting composites to existence. By careful selection of matrix and reinforcement (as well as the best manufacturing process to bring them together) it is possible to create significantly superior materials, with tailored properties for specific needs. Typical composite materials include composite building materials like cement and concrete, different metal composites, plastic composites and ceramic composites.

How are composite materials made?

The three main factors that help mold the end composite material are the matrix, reinforcement and manufacturing process. As matrix, many composites use resins, which are thermosetting or thermosoftening plastics (hence the name ‘reinforced plastics’ often given to them). These are polymers that hold the reinforcement together and help determine the physical properties of the end composite.

layers inside a composite image



Thermosetting plastics begin as liquid but then harden with heat. They do not return to liquid state and so they are durable, even in extreme exposure to chemicals and wear. Thermosoftening plastics are hard at low temperatures and but soften with heat. They are less commonly used but possess interesting advantages like long shelf life of raw material and capacity for recycling. There are other matrix materials such as ceramics, carbon and metals that are used for specific purposes.

Reinforcement materials grow more varied with time and technology, but the most commonly used ones are still glass fibers. Advanced composites tend to favor carbon fibers as reinforcement, which are much stronger than glass fibers, but are also more expensive. Carbon fiber composites are strong and light, and are used in aircraft structures and sports gear (golf clubs and various rackets). They are also increasingly used to replace metals that replace human bones. Some polymers make good reinforcement materials, and help make composites that are strong and light.

The manufacturing process usually involves a mould, in which the reinforcement is first placed and then the semi-liquid matrix is sprayed or poured in to form the object. Moulding processes are traditionally done by hand, though machine processing is becoming more common. One of the new methods is called ‘pultrusion’ and is ideal for making products that are straight and have a constant cross section, like different kinds of beams. Products that of thin or complex shape (like curved panels) are built up by applying sheets of woven fiber reinforcement, saturated with matrix material, over a mould. Advanced composites (like those which are used in aircraft) are usually made from a honeycomb of plastic held between two sheets of carbon-fiber reinforced composite material, which results in high strength, low weight and bending stiffness.

Where can composites be found?

Composite materials have many obvious advantages, as they can be made to be lightweight, strong, corrosion and heat resistant, flexible, transparent and more according to specific needs. Composites are already used in many industries, like boats, aerospace, sports equipment (golf shafts, tennis rackets, surfboards, hockey sticks and more), Automotive components, wind turbine blades, body armour, building materials, bridges, medical utilities and others. Composite materials’ merits and potential assures ample research in the field which is hoped to bring future developments and implementations in additional markets.

Modern aviation is a specific example of an industry with complex needs and requirements, which benefits greatly from composite materials’ advantages. This industry raises demands of light and strong materials, that are also durable to heat and corrosion. It is no surprise, then, that many aircraft have wing and tail sections, as well as propellers and rotor blades made of composites, along with much of the internal structure.

What is graphene?

Graphene is a two-dimensional matrix of carbon atoms, arranged in a honeycomb lattice. A single square-meter sheet of graphene would weigh just 0.0077 grams but could support up to four kilograms. That means it is thin and lightweight but also incredibly strong. It also has a large surface area, great heat and electricity conductivity and a variety of additional incredible traits. This is probably why scientists and researchers call it “a miracle material” and predict it will revolutionize just about every industry known to man.

Graphene and composite materials

As was stated before, graphene has a myriad of unprecedented attributes, any number of which could potentially be used to make extraordinary composites. The presence of graphene can enhance the conductivity and strength of bulk materials and help create composites with superior qualities. Graphene can also be added to metals, polymers and ceramics to create composites that are conductive and resistant to heat and pressure.

graphene and tin layered composite image

Graphene composites have many potential applications, with much research going on to create unique and innovative materials. The applications seem endless, as one graphene-polymer proves to be light, flexible and an excellent electrical conductor, while another dioxide-graphene composite was found to be of interesting photocatalytic efficiencies, with many other possible coupling of materials to someday make all kinds of composites. The potential of graphene composites includes medical implants, engineering materials for aerospace and renewables and much more.

Further reading

Latest Graphene Composite news

XFNano graphene materials used in advanced energy application research

The following is a sponsored post by XFNano

XFNano's graphene materials were recently used in two fascinating research work focused on advanced energy applications.

NiCo-HS@G fabrication (XFNano)

The first is a work by teams from Anhui Normal University, Chinese Academy of Sciences (CAS) and the University of the Chinese Academy of Sciences which developed a fast, one-step strategy to prepare sandwiched metal hydroxide/graphene composites through a kinetically controlled coprecipitation under room temperature. Such NiCo-HS@G nano-composite exhibits good electrocatalytic activity for OER, superior to most of the reported OER catalysts. Such performance and the facile preparation of NiCo-HS@G opens up a new avenue for the cost-effective and low-energy-consumption production of various sandwiched metal hydroxides/graphene composites as efficient OER electrocatalysts with desired morphology and competing performance for the applications in diverse energy devices.

Graphematech develops a simple, scalable method for coating polymer powder and granular with a layer of Aros Graphene

Sweden-based Graphematech, a startup company that develops and sells novel graphene-based nanocomposite materials and services, has announced the development of a scalable method for coating polymer powder and granular with a layer of its Aros Graphene. The Company sees this is a major boost to the polymer composites industry.

Graphematech develops a simple and scalable method for coating polymer powder and granular with a layer of Aros Graphene image

This newly developed method is said to be very efficient for obtaining high quality dispersion of Aros Graphene additive inside a polymer matrix without the use of high shear forces in melt mixing. It enormously reduces production costs and minimizes property degradation for both the polymer matrix and the additive while maintaining high quality and homogeneous composite. The invented method can be also applied for coating polymer powder with different materials such as metals, ceramics, fibers, cellulose and more.

The Graphene Catalog - find your graphene material here

Applied Graphene Materials launches two new product series

Applied Graphene Materials logoApplied Graphene Materials (AGM) recently announced the launch of two new series within its Genable platform dispersion technology range. The Genable 1000 series, meant to significantly enhance and reduce the content of existing anti-corrosion additives, and the Genable 2000 series, developed to deliver excellent anti-corrosion performance specifically on aluminium substrates.

AGM states that once formulated optimally into anti-corrosion coating systems, Genable dispersions have demonstrated substantial performance gains, providing extensions in coating lifetime of over 3 times under cyclic salt spray testing (ASTM G-85-94 Prohesion). Early adopters are reportedly already successfully applying these materials in real-world applications.

XFNano’s CEO discusses the company’s business and technology

Mr. Xu Jiang, president and general manager of China’s XFNano, was kind enough to answer a few questions we had for him regarding XFNano’s graphene materials, technology and business. Mr. Jiang founded XFNano in 2009, and he holds a master’s degree from Nanjing University of Posts and Telecommunications.

XFNano Office Building photo

Q: Hello Mr. Jiang, thank you for your time. Can you update us on your graphene production process and facilities?

In 2016, XFNANO put its new production line into operation, which yields an annual production capacity of 50 tons of high-quality graphene powder and 1,000 tons of graphene dispersion. We believe this can meet our customers’ demands for large quantities.

Indian team develops a graphene-based water cleaning process using seaweed

A team of Indian scientists has developed a graphene-based nano-material drawn from seaweed for effective treatment of toxic wastewater without using any chemicals.

Indian team develops graphene-based water cleaning process using seaweed image

Membrane-based filtration processes are generally used to treat industrial wastewater but can’t usually fully filter out heavy metal contaminants. In order to address this problem, processes that use activated carbon, graphene or carbon nano tubes are being developed as carbon-based processes can help remove dyes and heavy metals through adsorption. Researchers at the Central Salt and Marine Chemicals Research Institute, Bhavnagar, have developed a 'green' process by using seaweed as starting material. They have synthesized a graphene-iron sulfide nanocomposite from an abundant seaweed - Ulva fasciata – through direct pyrolysis technique.

Versarien - Think you know graphene? Think again!Versarien - Think you know graphene? Think again!