Article last updated on: Jan 29, 2019

What are composite materials?

Composite materials (also referred to as composition materials, or simply composites) are materials formed by combining two or more materials with different properties to produce an end material with unique characteristics. These materials do not blend or dissolve together but remain distinct within the final composite structure. Composite materials can be made to be stronger, lighter or more durable than traditional materials due to properties they gain from combining their different components.

Most composites are made up of two materials - the matrix (or binder) surrounds a cluster of fibers or fragments of a stronger material (reinforcement). A common example of this structure is fiberglass, which was developed in the 1940’s to be the first modern composite and is still in widespread use. In fiberglass, fine fibers of glass, which are woven into a cloth of sorts, act as the reinforcement in a plastic or resin matrix.

composite crossection image

While composite materials are not a new concept (for example, mud bricks, made from dried mud embedded with straw pieces, have been around for thousands of years), recent technologies have brought many new and exciting composites to existence. By careful selection of matrix and reinforcement (as well as the best manufacturing process to bring them together) it is possible to create significantly superior materials, with tailored properties for specific needs. Typical composite materials include composite building materials like cement and concrete, different metal composites, plastic composites and ceramic composites.

How are composite materials made?

The three main factors that help mold the end composite material are the matrix, reinforcement and manufacturing process. As matrix, many composites use resins, which are thermosetting or thermosoftening plastics (hence the name ‘reinforced plastics’ often given to them). These are polymers that hold the reinforcement together and help determine the physical properties of the end composite.

layers inside a composite image



Thermosetting plastics begin as liquid but then harden with heat. They do not return to liquid state and so they are durable, even in extreme exposure to chemicals and wear. Thermosoftening plastics are hard at low temperatures and but soften with heat. They are less commonly used but possess interesting advantages like long shelf life of raw material and capacity for recycling. There are other matrix materials such as ceramics, carbon and metals that are used for specific purposes.

Reinforcement materials grow more varied with time and technology, but the most commonly used ones are still glass fibers. Advanced composites tend to favor carbon fibers as reinforcement, which are much stronger than glass fibers, but are also more expensive. Carbon fiber composites are strong and light, and are used in aircraft structures and sports gear (golf clubs and various rackets). They are also increasingly used to replace metals that replace human bones. Some polymers make good reinforcement materials, and help make composites that are strong and light.

The manufacturing process usually involves a mould, in which the reinforcement is first placed and then the semi-liquid matrix is sprayed or poured in to form the object. Moulding processes are traditionally done by hand, though machine processing is becoming more common. One of the new methods is called ‘pultrusion’ and is ideal for making products that are straight and have a constant cross section, like different kinds of beams. Products that of thin or complex shape (like curved panels) are built up by applying sheets of woven fiber reinforcement, saturated with matrix material, over a mould. Advanced composites (like those which are used in aircraft) are usually made from a honeycomb of plastic held between two sheets of carbon-fiber reinforced composite material, which results in high strength, low weight and bending stiffness.

Where can composites be found?

Composite materials have many obvious advantages, as they can be made to be lightweight, strong, corrosion and heat resistant, flexible, transparent and more according to specific needs. Composites are already used in many industries, like boats, aerospace, sports equipment (golf shafts, tennis rackets, surfboards, hockey sticks and more), Automotive components, wind turbine blades, body armour, building materials, bridges, medical utilities and others. Composite materials’ merits and potential assures ample research in the field which is hoped to bring future developments and implementations in additional markets.

Modern aviation is a specific example of an industry with complex needs and requirements, which benefits greatly from composite materials’ advantages. This industry raises demands of light and strong materials, that are also durable to heat and corrosion. It is no surprise, then, that many aircraft have wing and tail sections, as well as propellers and rotor blades made of composites, along with much of the internal structure.

What is graphene?

Graphene is a two-dimensional matrix of carbon atoms, arranged in a honeycomb lattice. A single square-meter sheet of graphene would weigh just 0.0077 grams but could support up to four kilograms. That means it is thin and lightweight but also incredibly strong. It also has a large surface area, great heat and electricity conductivity and a variety of additional incredible traits. This is probably why scientists and researchers call it “a miracle material” and predict it will revolutionize just about every industry known to man.

Graphene and composite materials

As was stated before, graphene has a myriad of unprecedented attributes, any number of which could potentially be used to make extraordinary composites. The presence of graphene can enhance the conductivity and strength of bulk materials and help create composites with superior qualities. Graphene can also be added to metals, polymers and ceramics to create composites that are conductive and resistant to heat and pressure.

graphene and tin layered composite image

Graphene composites have many potential applications, with much research going on to create unique and innovative materials. The applications seem endless, as one graphene-polymer proves to be light, flexible and an excellent electrical conductor, while another dioxide-graphene composite was found to be of interesting photocatalytic efficiencies, with many other possible coupling of materials to someday make all kinds of composites. The potential of graphene composites includes medical implants, engineering materials for aerospace and renewables and much more.

Further reading

The latest graphene composite news:

A graphene industry, market and new conference series interview with Dr. Khasha Ghaffarzadeh

Our friend Dr. Khasha Ghaffarzadeh, a well respected graphene market analyst, is launching a new service called TechBlick that is a subscription-based online and all-year round event focused on advanced materials such as graphene, 2D materials, CNTs, boron nitrides, QDs, and more.

Graphene-Info partnered with TechBlick, to provide our readers an exclusive 25% discount on the TechBlick subscription. We took advantage of this launch to discuss the graphene market and industry with Dr. Ghaffarzadeh and also discuss the new service.

Hello Kasha. How do you see the graphene market shaping up in 2021?

I have closely followed and examined the graphene industry for a full decade. The landscape has certainly changed. Many companies have come and gone, and many once considered revolutionary applications are now ruled out, but overall, the industry is now at a tipping point.

We think 2021/2022 will be a turning point, setting the industry on its growth path, despite the delays caused these past 12 months due to Covid. For some, these delays have been painful as projects were pushed back or partners or customers dropped graphene to focus on other core areas. Many undershot their growth expectations, and some had difficult cash flow situations.

Orbex secures $24 million funding for its graphene-enhanced rocket

Orbex, a UK-based private, low-cost orbital launch services company, recently reported that it has secured $24 million in a funding round led by BGF (London) and Octopus Ventures (London). At the beginning of 2020, Orbex developed what it calls an "advanced, low carbon, high performance micro-launch" rocket called "Orbex Prime".

Orbex develops graphene-enhanced rocket image

The new investments secure the roadmap to the first launch of Orbex’s vertical launch vehicle, Orbex Prime, from the Space Hub Sutherland spaceport in Scotland. Incorporating a wide range of advanced materials for its development, the launch vehicle boasts a 3D-printed rocket engine manufactured in a single piece without joins in partnership with additive manufacturer SLM Solutions (Lübeck, Germany). The vehicle is also built out of graphene-enhanced carbon fiber composites for the main structures and tanks.

A hands-on (foot-on) review of SpaceBlue's graphene-enhanced recycled rubber floor mat

A couple of months ago UK-based SpaceBlue launched a graphene-enhanced flooring product called SpaceMat. The company sent us a floor mat for review here at Graphene-Info.

Reviewing a floor mat isn't easy - there's not much to do with it, so we decided to use it in our home for a few months - and let nature and our family of six (plus a husky) do its thing. One of the promises of the SpaceMat is its enhanced durability, and we definitely put that to the test.

MSI is now shipping its graphene-enhanced backplate RTX 3000 graphic cards

Last month MSI revealed that it is utilizing graphene composites in its RTX 3000 series GPUs. The new graphic cards are now shipping globally (the cost in the US is $1,699).

 MSI uses graphene in its graphic cards image

MSI uses a graphene composite material as the backplate of the GPU, which is traditionally made of plastic. MSI says that the graphene composite is 4X stronger than its previous plastic backplate, and offers much higher (20X) heat dissipation performance.

NanoXplore announces purchase order from Martinrea International to supply graphene for fuel and brake lines for passenger vehicles

NanoXplore logoNanoXplore recently reported that it received a blanket purchase order from Martinrea International to supply graphene for fuel and brake lines for passenger vehicles produced by North American automotive Original Equipment Manufacturers (“OEM”).

These graphene-enhanced products were tested and approved by OEMs and reportedly demonstrate significant lifetime improvements in comparison with existing solutions in the market. These parts will be supplied to OEMs by Martinrea within already-awarded multi-year fuel and brake line supply programs.