You are here

Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb-like pattern. Graphene is considered to be the world's thinnest, strongest and most conductive material - to both electricity and heat. All this properties are exciting researchers and businesses around the world - as graphene has the potential the revolutionize entire industries - in the fields of electricity, conductivity, energy generation, batteries, sensors and more.

Mechanical strength

Graphene is the world's strongest material, and so can be used to enhance the strength of other materials. Dozens of researches have demonstrated that adding even a trade amount of graphene to plastics, metals or other materials can make these materials much stronger - or lighter (as you can use less amount of material to achieve the same strength).



applications of composites image

Such graphene-enhanced composite materials can find uses in aerospace, building materials, mobile devices, and many other applications.

Thermal applications

Graphene is the world's most conductive material to heat. As graphene is also strong and light, it means that it is a great material to make heat-spreading solutions, such as heat sinks. This could be useful in both microelectronics (for example to make LED lighting more efficient and longer lasting) and also in larger applications - for example thermal foils for mobile devices.

graphene-bulb-demonstration-image

Energy storage

Because graphene is the world's thinnest material, it is also the material with the highest surface-area to volume ratio. This makes graphene a very promising material to be used in batteries and supercapacitors. Graphene may enable devices that can store more energy - and charge faster, too. Graphene can also be used to enhance fuel-cells.

Coatings ,sensors, electronics and more

Graphene has a lot of other promising applications: anti-corrosion coatings and paints, efficient and precise sensors, faster and efficient electronics, flexible displays, efficient solar panels, faster DNA sequencing, drug delivery, and more.

Graphene is such a great and basic building block that it seems that any industry can benefit from this new material. Time will tell where graphene will indeed make an impact - or whether other new materials will be more suitable.

Latest graphene application news

Graphene enables solar-powered "electronic skin" with sensing abilities

Mar 23, 2017

Researchers at the University of Glasgow have used graphene to develop a robotic hand with solar-powered skin, which may open the door to the development of prosthetic limbs or robots with a sense of touch.

Graphene prosthetic hand image

The team created the skin with the help of a single atomic layer of graphene, in a method that includes integrating power-generating photovoltaic cells into the electronic skin. The scientists say that “Whatever light is available, 98 percent is going and hitting the solar cell”, explaining that a solar panel is located just under the surface of the clear graphene skin. “it is generating power that can be used to get the sensitivity, the tactile feeling”.

Talga enters agreement with Zinergy to develop graphene inks for printed flexible bateries

Mar 22, 2017

Talga Resources logoTalga Resources, an Australia-based company focused on graphite mining and graphene supply and applications development, has announced that it has signed a joint development agreement with Zinergy UK to co-develop and supply graphene conductive inks for electrodes in thin, flexible printed batteries.

Under the terms of the agreement, Talga and Zinergy will collaborate to develop and trial graphene-based conductive ink formulations in components of the patented Zinergy ultra-thin printed battery. The development program will run for an initial 12 month period.

Graphene Batteries Market Report

A new graphene oxide coating to improve the performance of lithium-sulfur batteries

Mar 21, 2017

Researchers at Yale University have developed an ultra-thin coating material, based on graphene oxide, that has the potential to extend the life and improve the efficiency of lithium-sulfur batteries. The newly developed material is a dendrimer-graphene oxide composite film, that can be applied to any sulfur cathode.

GO coating to improve Li-sulfur batteries performance image

The researchers state that sulfur cathodes coated with the material can be stably discharged and recharged for more than 1,000 cycles, enhancing the battery’s efficiency and number of cycles. In addition, they said “the developed film is so thin and light it will not affect the overall size or weight of the battery, and thus it will function without compromising the energy and power density of the device”.

Skeleton Technologies launches graphene-based engine start supercapacitor

Mar 19, 2017

Skeleton Technologies, developer and manufacturer of high energy and power density supercapacitors, has announced launching a new graphene-based engine start module to help power heavy industry vehicles in extreme conditions. Called SkelStart Engine Start Module 2.0, it is available in 24V and 12V versions and is based on the graphene-based SkelCap supercapacitors, which Skeleton says provide the highest power and energy density on the market.

Skeleton's new graphene-based supercapacitor image

The new module’s casing is made of non-flammable material that is resistant to vibration and shock, and is a stud terminal device in BCI Group 31 size. Skeleton states that “SkelStart Engine Start modules are designed to provide reliable engine starting in even the harshest conditions, as well as reduced ongoing costs on maintenance and replacement. Businesses can therefore expect their equipment to work cost effectively year-round, affording them peace of mind.”

Graphene used in a molecule that converts carbon dioxide to carbon monoxide

Mar 15, 2017

An international team of scientists has designed a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide. The process includes using a nanographene-rhenium complex connected via an organic compound known as bipyridine to trigger a highly efficient reaction that could someday replace solar cells.

Graphene compound to replace solar cells image

The molecule acts as a two-part system: a nanographene "energy collector" that absorbs energy from sunlight and an atomic rhenium "engine" that produces carbon monoxide. The energy collector drives a flow of electrons to the rhenium atom, which repeatedly binds and converts the normally stable carbon dioxide to carbon monoxide. The idea to link nanographene to the metal arose from earlier efforts to create a more efficient solar cell with the carbon-based material. But this model actually eliminates the solar cells, and uses the light-absorbing quality of nanographene alone to drive the reaction.