Researchers develop novel graphene-based implantable neurotechnology

A new study, led by the Catalan Institute of Nanoscience and Nanotechnology (ICN2) along with the Universitat Autònoma de Barcelona (UAB) and other international partners like the University of Manchester (under the European Graphene Flagship project), presents EGNITE (Engineered Graphene for Neural Interfaces) - a novel class of flexible, high-resolution, high-precision graphene-based implantable neurotechnology with the potential for a transformative impact in neuroscience and medical applications. 

This work aims to deliver an innovative technology to the growing field of neuroelectronics and brain-computer interfaces. EGNITE builds on the experience of its inventors in fabrication and medical translation of carbon nanomaterials. This innovative technology based on nanoporous graphene integrates fabrication processes standard in the semiconductor industry to assemble graphene microelectrodes of a mere 25 µm in diameter. The graphene microelectrodes exhibit low impedance and high charge injection, essential attributes for flexible and efficient neural interfaces.

 

Preclinical studies by various neuroscience and biomedical experts that partnered with ICN2, using different models for both the central and peripheral nervous system, reportedly demonstrated the capacity of EGNITE in recording high-fidelity neural signals with exceptional clarity and precision and, more importantly, affording highly targeted nerve modulation.

The team expects the unique combination of high-fidelity signal recording and precise nerve stimulation offered by EGNITE technology to represent a potentially critical advancement in neuroelectronic therapeutics. This innovative approach addresses a critical gap in neurotechnology, which has seen little advancement in materials over the last two decades. The development of EGNITE electrodes has the capacity to place graphene at the forefront of neurotechnological materials.

The EGNITE technology has been patented and licensed to INBRAIN Neuroelectronics, a spin-off based in Barcelona from ICN2 and ICREA, with support from IMB-CNM (CSIC). The company, also a partner in the Graphene Flagship project, is leading the translation of the technology into clinical applications and products. Under the direction of CEO Carolina Aguilar, INBRAIN Neuroelectronics is gearing up for the first-in-human clinical trials of this innovative graphene technology.

Behind this development is a collaborative effort led by ICN2 researchers Damià Viana (now at INBRAIN Neuroelectronics), Steven T. Walston (now at University of Southern California), and Eduard Masvidal-Codina, under the guidance of ICREA Jose A. Garrido, leader of the ICN2 Advanced Electronic Materials and Devices Group, and ICREA Kostas Kostarelos, leader of the ICN2Nanomedicine Lab and the Faculty of Biology, Medicine & Health at the University of Manchester (UK). The research has had the participation of Xavier Navarro, Natàlia de la Oliva, Bruno Rodríguez-Meana and Jaume del Valle, from the Institute of Neurosciences and the Department of Cellular Biology, Physiology and Immunology of the Universitat Autònoma de Barcelona (UAB).

The collaboration includes the contribution of leading national and international institutions, such as the Institut de Microelectrònica de Barcelona -- IMB-CNM (CSIC), the National Graphene Institute in Manchester (UK), and the Grenoble Institut des Neurosciences -- Université Grenoble Alpes (France) and the University of Barcelona.

The technology integration into the standard semiconductor fabrication processes has been performed at the Micro and Nanofabrication cleanroom of the IMB-CNM (CSIC), under the supervision of CIBER researcher Dr Xavi Illa.

Posted: Jan 15,2024 by Roni Peleg