You are here

Polish team creates transparent cryogenic temperature sensor

Jan 08, 2017

Researchers from the Lodz University of Technology in Poland have designed a transparent, flexible cryogenic temperature sensor with graphene structures as sensing elements. Such sensors could be useful for any field that requires operating in low-temperatures, such as medical diagnostics, space exploration and aviation, processing and storage of food and scientific research.

Making graphene transparent cryogenic temperature sensors

The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor).

Graphene enables a system that can detect cancer cells

Dec 20, 2016

Researchers at the University of Illinois at Chicago have shown an interfacing system that can differentiate a single cancerous cell from a normal cell using graphene, hopefully opening the door to developing a simple, noninvasive tool for early cancer diagnosis.

Graphene to detect cancer image

The team explains that this graphene system is able to detect the level of activity of an interfaced cell. The cell's interface with graphene rearranges the charge distribution in graphene, which modifies the energy of atomic vibration as detected by Raman spectroscopy. The atomic vibration energy in graphene's structure differs depending on whether it's in contact with a cancer cell or a normal cell, because the cancer cell's hyperactivity leads to a higher negative charge on its surface and the release of more protons.

Graphene-based system may enable imaging of electrical activity in heart and nerve cells

Dec 18, 2016

Researchers at the Berkeley Lab and Stanford University have used graphene as the film of an ultra-sensitive camera system designed for visually mapping tiny electric fields in a liquid. The new platform should permit single-cell measurements of electrical impulses traveling across networks containing 100 or more living cells. The researchers hope it will allow more extensive and precise imaging of the electrical signaling networks in our hearts and brains. Additional potential applications include the development of lab-on-a-chip devices, sensing devices and more.

CAGE system using graphene image

The team explains that the basic concept was examining how graphene could be used as a general and scalable method for resolving very small changes in the magnitude, position, and timing pattern of a local electric field, such as the electrical impulses produced by a single nerve cell. Other techniques have been developed to measure electrical signals from small arrays of cells, but these can be difficult to scale up to larger arrays and in some cases cannot trace individual electrical impulses to a specific cell. In addition, this new method does not perturb cells in any way, which is fundamentally different from existing methods that use either genetic or chemical modifications of the cell membrane.

Exeter team unveils novel graphene production method that could accelerate commercial graphene use

Dec 14, 2016

Researchers from the University of Exeter have developed a new method for creating entire device arrays directly on the copper substrates used for commercial manufacture of graphene. Complete and fully-functional devices can then be transferred to a substrate of choice, such as silicon, plastics or even textiles.

Exeter University's new graphene production method image

This new approach is said to be cheaper, simpler and less time consuming than conventional ways of producing graphene-based devices, thus holding real potential to open up the use of cheap-to-produce graphene devices for a host of applications from gas and biomedical sensors to displays.

Graphene "silly putty" enables next-gen sensors

Dec 11, 2016

Researchers in AMBER, the materials science research center located in Trinity College Dublin and funded by Science Foundation Ireland, have used graphene-enhanced "silly putty" (polysilicone) to create extremely sensitive sensors. This fascinating research offers exciting possibilities for applications in new, inexpensive devices and diagnostics in medicine and other sectors.

The researchers discovered that the electrical resistance of putty infused with graphene (“G-putty”) was extremely sensitive to the slightest deformation or impact. They mounted the G-putty onto the chest and neck of human subjects and used it to measure breathing, pulse and even blood pressure. It showed unprecedented sensitivity as a sensor for strain and pressure, being hundreds of times more sensitive than normal sensors. The G-putty also works as a very sensitive impact sensor, able to detect the footsteps of small spiders. The scientists believe that this material will find applications in a range of medical devices.